1.The effect of low frequency transcranial magnetic stimulation on neuropeptide-Y expression and apoptosis of hippocampus neurons in epilepsy rats induced by pilocarpine.
Yong-Li WANG ; Yu ZHAI ; Xiao-Lin HUO ; Jian-Ning ZHANG
Chinese Journal of Surgery 2007;45(24):1685-1687
OBJECTIVETo analyze the effect of low frequency transcranial magnetic stimulation (LF-TMS) on changing neuropeptide-Y (NPY) expression and apoptosis of hippocampus neurons in epilepsy rats induced by pilocarpine (PLO).
METHODSThirty male Sprague Dawley rats (240 g +/- 20 g) were randomly divided into 2 groups. I group simply celiac injected pilocarpine. II group celiac injected PLO after LF-TMS. Pathological item included HE staining, NPY immunohistochemical staining and apoptosis staining.
RESULTSHE staining revealed neurons of hippocampus were obviously death and cell's structure was destroyed in PLO group. The PLO + LF-TMS group was less injured and destroyed. Using One-Way ANOVA, NPY immunohistochemical staining shown the positive cell number was increased at all areas of hippocampus in PLO group contrasting with the low positive cell number in the PLO + LF-TMS group. In PLO group the number of apoptosis cell at hippocampus areas was significant higher than the PLO + LF-TMS group.
CONCLUSIONSUsing the PLO evoked epilepsy model, LF-TMS alleviated neurons injury at hippocampus area, so LF-TMS might playing an important role in resisting the progressing of epilepsy. The positive cell number of NPY increased at all areas of hippocampus, which indicated the close relation between NPY and epilepsy. NPY might have some function on resisting epilepsy.
Animals ; Apoptosis ; Disease Models, Animal ; Epilepsy, Temporal Lobe ; chemically induced ; metabolism ; pathology ; therapy ; Hippocampus ; metabolism ; pathology ; Male ; Neurons ; metabolism ; pathology ; Neuropeptide Y ; metabolism ; Pilocarpine ; toxicity ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Transcranial Magnetic Stimulation ; methods
2.Preserved Hippocampal Glucose Metabolism on 18F-FDG PET after Transplantation of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells in Chronic Epileptic Rats.
Ga Young PARK ; Eun Mi LEE ; Min Soo SEO ; Yoo Jin SEO ; Jungsu S OH ; Woo Chan SON ; Ki Soo KIM ; Jae Seung KIM ; Joong Koo KANG ; Kyung Sun KANG
Journal of Korean Medical Science 2015;30(9):1232-1240
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may be a promising modality for treating medial temporal lobe epilepsy. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a noninvasive method for monitoring in vivo glucose metabolism. We evaluated the efficacy of hUCB-MSCs transplantation in chronic epileptic rats using FDG-PET. Rats with recurrent seizures were randomly assigned into three groups: the stem cell treatment (SCT) group received hUCB-MSCs transplantation into the right hippocampus, the sham control (ShC) group received same procedure with saline, and the positive control (PC) group consisted of treatment-negative epileptic rats. Normal rats received hUCB-MSCs transplantation acted as the negative control (NC). FDG-PET was performed at pre-treatment baseline and 1- and 8-week posttreatment. Hippocampal volume was evaluated and histological examination was done. In the SCT group, bilateral hippocampi at 8-week after transplantation showed significantly higher glucose metabolism (0.990 +/- 0.032) than the ShC (0.873 +/- 0.087; P < 0.001) and PC groups (0.858 +/- 0.093; P < 0.001). Histological examination resulted that the transplanted hUCB-MSCs survived in the ipsilateral hippocampus and migrated to the contralateral hippocampus but did not differentiate. In spite of successful engraftment, seizure frequency among the groups was not significantly different. Transplanted hUCB-MSCs can engraft and migrate, thereby partially restoring bilateral hippocampal glucose metabolism. The results suggest encouraging effect of hUCB-MSCs on restoring epileptic networks.
Animals
;
Chronic Disease
;
Cord Blood Stem Cell Transplantation/*methods
;
Epilepsy, Temporal Lobe/*metabolism/pathology/*therapy
;
Fluorodeoxyglucose F18/*pharmacokinetics
;
Hippocampus/*metabolism/*pathology/surgery
;
Male
;
Mesenchymal Stem Cell Transplantation/methods
;
Radiopharmaceuticals/pharmacokinetics
;
Rats
;
Rats, Sprague-Dawley
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Tissue Distribution
;
Treatment Outcome