1.Hi-Meth: a platform for high-throughput detection of site-specific DNA methylation.
Huiying LI ; Qing LIU ; Min GUO ; Kejian WANG ; Changjie YAN ; Chun WANG
Chinese Journal of Biotechnology 2022;38(8):3049-3061
Cytosine methylation is one of the major types of DNA epigenetic modifications and plays an important role in maintaining normal cell function and regulating gene expression. Bisulfite sequencing PCR (BSP) based cloning and sequencing is a general method for detecting DNA methylation at specific sites, which can clarify the methylation status of each CpG site in the target fragment. However, this method requires large amounts of single-clonal sequencing, which is complicated to operate, time consuming and expensive. Therefore, the development of an accurate, efficient and convenient DNA methylation detection technology is of great significance to improve the efficiency of epigenetic research. Based on the high-throughput mutation detection platform Hi-TOM (high-throughput tracking of mutations) developed by our group, we further established a site-specific DNA methylation high-throughput detection platform Hi-Meth (High-throughput Detection of DNA Methylation). After bisulfite treatment of DNA samples, the specific site-specific DNA methylation analysis results could be obtained through the Hi-Meth platform by performing only one round of PCR amplification. Using the Hi-Meth platform, the DNA methylation status of two promoter regions of rice were detected. The DNA methylation results from Hi-Meth were consistent with the results from BSP-based method. Thus, site-specific DNA methylation analysis results could be obtained accurately and conveniently through the Hi-Meth platform. In conclusion, Hi-Meth provides an important methylation detection platform for specific DNA regions, which has important significance for epigenetic research.
DNA Methylation
;
Epigenesis, Genetic
;
Epigenomics
;
High-Throughput Nucleotide Sequencing/methods*
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA/methods*
2.Multi-omics technology and its applications to life sciences: a review.
Jingfang LIU ; Weilin LI ; Li WANG ; Juan LI ; Erwei LI ; Yuanming LUO
Chinese Journal of Biotechnology 2022;38(10):3581-3593
With technological advances in high-throughput sequencing, high resolution mass-spectrometry, and multi-omics data integrative tools and data repositories, the omics research in life sciences are evolving from single-omics strategy to multi-omics strategy. The research of system biology driven by multi-omics will bring a new paradigm in life sciences. This paper briefly summarizes the development of genomics, epigenomics, transcriptomics, proteomics and metabolomics, highlights the composition and function of multi-omics platforms as well as the applications of multi-omics technology, and prospects future applications of multi-omics in synthetic biology and biomedicine.
Genomics
;
Proteomics/methods*
;
Metabolomics/methods*
;
Epigenomics/methods*
;
Technology
3.Metabolic reprogramming and epigenetic modifications on the path to cancer.
Linchong SUN ; Huafeng ZHANG ; Ping GAO
Protein & Cell 2022;13(12):877-919
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Chromatin
;
DNA Methylation
;
Epigenesis, Genetic
;
Epigenomics
;
Histones/metabolism*
;
Humans
;
Neoplasms/therapy*
4.Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter.
Natalie M JOHNSON ; Aline Rodrigues HOFFMANN ; Jonathan C BEHLEN ; Carmen LAU ; Drew PENDLETON ; Navada HARVEY ; Ross SHORE ; Yixin LI ; Jingshu CHEN ; Yanan TIAN ; Renyi ZHANG
Environmental Health and Preventive Medicine 2021;26(1):72-72
BACKGROUND:
Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development.
METHOD:
In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM
RESULTS:
Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health.
CONCLUSION
Policies to reduce maternal exposure and health consequences in children should be a high priority. PM
Adult
;
Air Pollutants/adverse effects*
;
Air Pollution/prevention & control*
;
Animals
;
Cardiovascular Diseases/chemically induced*
;
Child Health
;
Child, Preschool
;
Disease Models, Animal
;
Endocrine System Diseases/chemically induced*
;
Epigenomics
;
Female
;
Humans
;
Immune System Diseases/chemically induced*
;
Infant
;
Infant, Newborn
;
Male
;
Maternal Exposure/adverse effects*
;
Nervous System Diseases/chemically induced*
;
Oxidative Stress
;
Particle Size
;
Particulate Matter/adverse effects*
;
Placenta
;
Pregnancy
;
Pregnancy Outcome/epidemiology*
;
Prenatal Exposure Delayed Effects/epidemiology*
;
Respiratory Tract Diseases/chemically induced*
;
Young Adult
5.Epigenetic clocks in the pediatric population: when and why they tick?
Chinese Medical Journal 2021;134(24):2901-2910
Recent research efforts have provided compelling evidence of genome-wide DNA methylation alterations in pediatrics. It is currently well established that epigenetic clocks, composed of DNA methylation sites, can estimate the gestational and chronological age of cells and tissues from different ages. Also, extensive research is aimed at their correlation with early life exposure and pediatric diseases. This review aimed to systematically summarize the epigenetic clocks in the pediatric population. Publications were collected from PubMed and Web of Science databases up to Apr 2021. Epigenetic clocks, DNA methylation clocks, epigenetic age acceleration or deceleration, pediatric and the pediatric population were used as search criteria. Here, we first review the currently applicative pediatric epigenetic clocks. We then highlight the interpretation for epigenetic age deviations in the pediatric population and their association with external factors, developmental trajectories, and pediatric diseases. Considering the remaining unknown of pediatric clocks, research strategies into them are also discussed. In all, pediatric epigenetic clocks may act as potent tools to understand development, growth and diseases in early life.
Aging
;
Child
;
DNA Methylation/genetics*
;
Epigenesis, Genetic/genetics*
;
Epigenomics
;
Humans
6.Mapping the epigenetic modifications of DNA and RNA.
Lin-Yong ZHAO ; Jinghui SONG ; Yibin LIU ; Chun-Xiao SONG ; Chengqi YI
Protein & Cell 2020;11(11):792-808
Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.
Animals
;
DNA/metabolism*
;
DNA Methylation
;
Epigenesis, Genetic
;
Epigenomics
;
Humans
;
RNA/metabolism*
;
Transcriptome
7.Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis
Zheng LIU ; Jianjun CHEN ; Lei CHENG ; Huabin LI ; Shixi LIU ; Hongfei LOU ; Jianbo SHI ; Ying SUN ; Dehui WANG ; Chengshuo WANG ; Xiangdong WANG ; Yongxiang WEI ; Weiping WEN ; Pingchang YANG ; Qintai YANG ; Gehua ZHANG ; Yuan ZHANG ; Changqing ZHAO ; Dongdong ZHU ; Li ZHU ; Fenghong CHEN ; Yi DONG ; Qingling FU ; Jingyun LI ; Yanqing LI ; Chengyao LIU ; Feng LIU ; Meiping LU ; Yifan MENG ; Jichao SHA ; Wenyu SHE ; Lili SHI ; Kuiji WANG ; Jinmei XUE ; Luoying YANG ; Min YIN ; Lichuan ZHANG ; Ming ZHENG ; Bing ZHOU ; Luo ZHANG
Allergy, Asthma & Immunology Research 2020;12(2):176-237
The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines—with a focus on China—will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.
Adult
;
Asian Continental Ancestry Group
;
Biomarkers
;
China
;
Consensus
;
Diagnosis
;
Diagnosis, Differential
;
Drug Therapy
;
Eosinophils
;
Epidemiology
;
Epigenomics
;
Genetics
;
Humans
;
Hypersensitivity
;
Inflammation
;
International Agencies
;
Medical Staff
;
Neck
;
Phenotype
;
Precision Medicine
9.Circulating MicroRNAs and T-Cell Cytokine Expression Are Associated With the Characteristics of Asthma Exacerbation
Aleksandra WARDZYŃSKA ; Małgorzata PAWEŁCZYK ; Joanna RYWANIAK ; Marcin KUROWSKI ; Joanna S MAKOWSKA ; Marek L KOWALSKI
Allergy, Asthma & Immunology Research 2020;12(1):125-136
PURPOSE: Immunological mechanisms underlying asthma exacerbation have not been elucidated. The aim of this study was to assess the associations of various asthma exacerbation traits with selected serum microRNA (miRNA) expression and T-cell subpopulations. METHODS: Twenty-one asthmatics were studied during asthma exacerbation (exacerbation visit [EV] and the follow-up visit [FV] at 6 weeks). At both visits, spirometry was performed, fractional exhaled nitric oxide (FeNO) was measured, and nasopharyngeal and blood samples were collected. In nasopharyngeal samples, respiratory viruses were assayed by multiplex polymerase chain reaction (PCR), and bacterial cultures were performed. Serum miRNAs were assayed with real-time PCR. T-cell surface markers, eosinophil progenitors and intracellular cytokines were assessed by flow cytometry. RESULTS: Two-thirds of patients had moderate or severe exacerbation and the FV, overall improvement in asthma control was observed. The mean expression of serum miRNA-126a, miRNA-16 and miRNA-21 was significantly lower at the EV than at the FV. At EV, miRNA-29b correlated with FeNO (r = 0.44, P < 0.05), and 5 of 7 miRNA tested correlated with pulmonary function tests. The number of cluster of differentiation (CD)45+CD4+interleukin (IL)4+ cells was significantly higher at the EV than at the FV, and positive correlations of T-regulatory cells and eosinophil progenitors with asthma control was found. At the EV, serum miRNAs negatively correlated with the number of T cells expressing IL-4, IL-17, IL-22 and interferon gamma, while at the FV both positive and negative correlations with T-cell subsets were observed. No association of detected pathogen (viruses and bacteria) in nasopharyngeal fluid with clinical, functional and immunological parameters was found. CONCLUSIONS: Epigenetic dysregulation during asthma exacerbation could be related to respiratory function, airway inflammation and T-cell cytokine expression.
Asthma
;
Cytokines
;
Disease Progression
;
Eosinophils
;
Epigenomics
;
Flow Cytometry
;
Follow-Up Studies
;
Humans
;
Inflammation
;
Interferons
;
Interleukin-17
;
Interleukin-4
;
MicroRNAs
;
Multiplex Polymerase Chain Reaction
;
Nitric Oxide
;
Real-Time Polymerase Chain Reaction
;
Respiratory Function Tests
;
Spirometry
;
T-Lymphocyte Subsets
;
T-Lymphocytes
10.Alteration of Genomic Imprinting Status of Human Parthenogenetic Induced Pluripotent Stem Cells during Neural Lineage Differentiation
Hye Jeong LEE ; Na Young CHOI ; Seung Wong LEE ; Yukyeong LEE ; Kisung KO ; Gwang Jun KIM ; Han Sung HWANG ; Kinarm KO
International Journal of Stem Cells 2019;12(1):31-42
BACKGROUND AND OBJECTIVES: Genomic imprinting modulates growth and development in mammals and is associated with genetic disorders. Although uniparental embryonic stem cells have been used to study genomic imprinting, there is an ethical issue associated with the destruction of human embryos. In this study, to investigate the genomic imprinting status in human neurodevelopment, we used human uniparental induced pluripotent stem cells (iPSCs) that possessed only maternal alleles and differentiated into neural cell lineages. METHODS: Human somatic iPSCs (hSiPSCs) and human parthenogenetic iPSCs (hPgiPSCs) were differentiated into neural stem cells (NSCs) and named hSi-NSCs and hPgi-NSCs respectively. DNA methylation and gene expression of imprinted genes related neurodevelopment was analyzed during reprogramming and neural lineage differentiation. RESULTS: The DNA methylation and expression of imprinted genes were altered or maintained after differentiation into NSCs. The imprinting status in NSCs were maintained after terminal differentiation into neurons and astrocytes. In contrast, gene expression was differentially presented in a cell type-specific manner. CONCLUSIONS: This study suggests that genomic imprinting should be determined in each neural cell type because the genomic imprinting status can differ in a cell type-specific manner. In addition, the in vitro model established in this study would be useful for verifying the epigenetic alteration of imprinted genes which can be differentially changed during neurodevelopment in human and for screening novel imprinted genes related to neurodevelopment. Moreover, the confirmed genomic imprinting status could be used to find out an abnormal genomic imprinting status of imprinted genes related with neurogenetic disorders according to uniparental genotypes.
Alleles
;
Astrocytes
;
Cell Lineage
;
DNA Methylation
;
Embryonic Stem Cells
;
Embryonic Structures
;
Epigenomics
;
Ethics
;
Gene Expression
;
Genomic Imprinting
;
Genotype
;
Growth and Development
;
Humans
;
In Vitro Techniques
;
Induced Pluripotent Stem Cells
;
Mammals
;
Mass Screening
;
Neural Stem Cells
;
Neurons

Result Analysis
Print
Save
E-mail