1.Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells.
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1276-1283
OBJECTIVE:
To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process.
METHODS:
The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot.
RESULTS:
When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05).
CONCLUSION
Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Humans
;
beta Catenin/metabolism*
;
Bone Marrow Cells
;
Cell Differentiation
;
Cells, Cultured
;
Epidermal Growth Factor/metabolism*
;
Mesenchymal Stem Cells
;
Wnt Signaling Pathway
;
Neurons
;
Fibroblast Growth Factor 2/metabolism*
2.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT.
Ya Ting WU ; Ze ZHANG ; Ran JI ; Shu Hao ZHANG ; Wen Ping WANG ; Chao WU ; Jia Ping ZHANG ; Xu Pin JIANG ; Hengshu ZHANG
Chinese Journal of Burns 2022;38(11):1066-1072
Objective: To investigate the regulatory effects of bio-intensity electric field on directional migration and microtubule acetylation in human epidermal cell line HaCaT, aiming to provide molecular theoretical basis for the clinical treatment of wound repair. Methods: The experimental research methods were used. HaCaT cells were collected and divided into simulated electric field group (n=54) placed in the electric field device without electricity for 3 h and electric field treatment group (n=52) treated with 200 mV/mm electric field for 3 h (the same treatment methods below). The cell movement direction was observed in the living cell workstation and the movement velocity, trajectory velocity, and direction of cosθ of cell movement within 3 h of treatment were calculated. HaCaT cells were divided into simulated electric field group and electric field treatment 1 h group, electric field treatment 2 h group, and electric field treatment 3 h group which were treated with 200 mV/mm electric field for corresponding time. HaCaT cells were divided into simulated electric field group and 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group treated with electric field of corresponding intensities for 3 h. The protein expression of acetylated α-tubulin was detected by Western blotting (n=3). HaCaT cells were divided into simulated electric field group and electric field treatment group, and the protein expression of acetylated α-tubulin was detected and located by immunofluorescence method (n=3). Data were statistically analyzed with Kruskal-Wallis H test,Mann-Whitney U test, Bonferroni correction, one-way analysis of variance, least significant difference test, and independent sample t test. Results: Within 3 h of treatment, compared with that in simulated electric field group, the cells in electric field treatment group had obvious tendency to move directionally, the movement velocity and trajectory velocity were increased significantly (with Z values of -8.53 and -2.05, respectively, P<0.05 or P<0.01), and the directionality was significantly enhanced (Z=-8.65, P<0.01). Compared with (0.80±0.14) in simulated electric field group, the protein expressions of acetylated α-tubulin in electric field treatment 1 h group (1.50±0.08) and electric field treatment 2 h group (1.89±0.06) were not changed obviously (P>0.05), while the protein expression of acetylated α-tubulin of cells in electric field treatment 3 h group (3.37±0.36) was increased significantly (Z=-3.06, P<0.05). After treatment for 3 h, the protein expressions of acetylated α-tubulin of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group were 1.63±0.05, 2.24±0.08, and 2.00±0.13, respectively, which were significantly more than 0.95±0.27 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of acetylated α-tubulin in 200 mV/mm electric field group and 300 mV/mm electric field group were increased significantly (P<0.01); the protein expression of acetylated α-tubulin of cells in 300 mV/mm electric field group was significantly lower than that in 200 mV/mm electric field group (P<0.05). After treatment for 3 h, compared with that in simulated electric field group, the acetylated α-tubulin of cells had enhanced directional distribution and higher protein expression (t=5.78, P<0.01). Conclusions: Bio-intensity electric field can induce the directional migration of HaCaT cells and obviously up-regulate the level of α-ubulin acetylation after treatment at 200 mV/mm bio-intensity electric field for 3 h.
Humans
;
Acetylation
;
Tubulin/metabolism*
;
Microtubules/metabolism*
;
Electricity
;
Epidermal Cells/metabolism*
3.1-Methoxycarbony-β-carboline from Picrasma quassioides exerts anti-angiogenic properties in HUVECs in vitro and zebrafish embryos in vivo.
Qing-Hua LIN ; Wei QU ; Jian XU ; Feng FENG ; Ming-Fang HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):599-609
Angiogenesis is a crucial process in the development of inflammatory diseases, including cancer, psoriasis and rheumatoid arthritis. Recently, several alkaloids from Picrasma quassioides had been screened for angiogenic activity in the zebrafish model, and the results indicated that 1-methoxycarbony-β-carboline (MCC) could effectively inhibit blood vessel formation. In this study, we further confirmed that MCC can inhibit, in a concentration-dependent manner, the viability, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as the regenerative vascular outgrowth of zebrafish caudal fin in vivo. In the zebrafish xenograft assay, MCC inhibited the growth of tumor masses and the metastatic transplanted DU145 tumor cells. The proteome profile array of the MCC-treated HUVECs showed that MCC could down-regulate several angiogenesis-related self-secreted proteins, including ANG, EGF, bFGF, GRO, IGF-1, PLG and MMP-1. In addition, the expression of two key membrane receptor proteins in angiogenesis, TIE-2 and uPAR, were also down-regulated after MCC treatment. Taken together, these results shed light on the potential therapeutic application of MCC as a potent natural angiogenesis inhibitor via multiple molecular targets.
Angiogenesis Inhibitors
;
chemistry
;
pharmacology
;
Animals
;
Carbolines
;
chemistry
;
pharmacology
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Epidermal Growth Factor
;
genetics
;
metabolism
;
Fibroblast Growth Factors
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
drug effects
;
Picrasma
;
chemistry
;
Plant Extracts
;
chemistry
;
pharmacology
;
Receptor, TIE-2
;
genetics
;
metabolism
;
Zebrafish
;
embryology
4.Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration.
Yuan-Yuan JIA ; Jing-Yi ZHOU ; Yue CHANG ; Fang AN ; Xiao-Wei LI ; Xiao-Yue XU ; Xiu-Li SUN ; Chun-Yang XIONG ; Jian-Liu WANG
Chinese Medical Journal 2018;131(17):2089-2096
Background:
Fibroblasts were the main seed cells in the studies of tissue engineering of the pelvic floor ligament. Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were widely studied but at various concentrations. This study aimed to optimize the concentrations of combined bFGF and EGF by evaluating their effects on proliferation and collagen secretion of fibroblasts.
Methods:
Fibroblasts were differentiated from rat adipose mesenchymal stem cells (ADSCs). Flow cytometry and immunohistochemistry were used for cell identification. The growth factors were applied at concentrations of 0, 1, 10, and 100 ng/ml as three groups: (1) bFGF alone, (2) EGF alone, and (3) bFGF mixed with EGF. Cell proliferation was evaluated by Cell Counting Kit-8 assays. Expression of Type I and III collagen (Col-I and Col-III) mRNAs was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. Statistical analysis was performed with SPSS software and GraphPad Prism using one-way analysis of variance and multiple t-test.
Results:
ADSCs were successfully isolated from rat adipose tissue as identified by expression of typical surface markers CD29, CD44, CD90, and CD45 in flow cytometry. Fibroblasts induced from ADSC, compared with ADSCs, were with higher mRNA expression levels of Col I and Col III (F = 1.29, P = 0.0390). bFGF, EGF, and the mixture of bFGF with EGF can enhanced fibroblasts proliferation, and the concentration of 10 ng/ml of the mixture of bFGF with EGF displayed most effectively (all P < 0.05). The expression levels of Col-I and Col-III mRNAs in fibroblasts displayed significant increases in the 10 ng/ml bFGF combined with EGF group (all P < 0.05).
Conclusions
The optimal concentration of both bFGF and EGF to promote cell proliferation and collagen expression in fibroblasts was 10 ng/ml at which fibroblasts grew faster and secreted more Type I and III collagens into the extracellular matrix, which might contribute to the stability of the pelvic floor microenvironment.
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Collagen
;
metabolism
;
Epidermal Growth Factor
;
physiology
;
Fibroblast Growth Factor 2
;
physiology
;
Fibroblasts
;
physiology
;
Pelvic Floor
;
Rats
;
Regeneration
5.Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts.
Qi'er WU ; Lu LYU ; Haiming XIN ; Liang LUO ; Yalin TONG ; Yongliang MO ; Yigang YUE
Chinese Journal of Burns 2016;32(6):370-375
OBJECTIVETo investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts.
METHODS(1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post scratch hour (PSH) 0 (immediately after scratch), 12, 24, 48, and 72, the migration distance of cells was observed and measured with inverted phase contrast microscope. (6) Human fibroblasts were grouped and treated as in (5), with 3 battles in each group, and apoptosis rate of cells was detected by flow cytometer. Data were processed with analysis of variance of factorial design, analysis of variance for repeated measurement, one-way analysis of variance, LSD test, and t test.
RESULTS(1) On culture day 3, most hAMSCs were in large form, and spindle-shaped with much prominences like fibroblasts or in flat polygonal shape. hAMSCs of the third passage were spindle-shaped. The expression of vimentin of hAMSCs of the third passage was strongly positive, and the expressions of surface markers CD90, CD73, and CD105 of the cells were positive, while the expression of CD45 of the cells was negative. (2) The content of IGF-Ⅰ, VEGF, EGF, and bFGF in hAMSCs-CS were respectively (11.7±1.0), (316±68), (6.1±0.4), and (1.49±0.05) pg/mL. (3) At culture hour 12-72, the proliferation activity of human fibroblasts in each hAMSCs-CS group was significantly higher than that in blank control group (with P values below 0.01), and the proliferation activity of human fibroblasts in 50% hAMSCs-CS group was the highest. (4) The width of scratch in two groups was nearly the same at PSH 0. The migration distance of cells in 50% hAMSCs-CS group was significantly longer than that in blank control group at PSH 12-72 (with P values below 0.01). (5) The apoptosis rate of human fibroblasts in blank control group was (16.2±2.4)%, which was significantly higher than that in 50% hAMSCs-CS group [(7.4±3.6)%, t=6.710, P<0.01].
CONCLUSIONShAMSCs-CS can promote proliferation and migration of human fibroblasts and inhibit the apoptosis of human fibroblasts.
Amnion ; cytology ; Apoptosis ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Culture Media, Conditioned ; chemistry ; Enzyme-Linked Immunosorbent Assay ; Epidermal Growth Factor ; metabolism ; Female ; Fibroblast Growth Factor 2 ; metabolism ; Fibroblasts ; cytology ; drug effects ; Flow Cytometry ; Humans ; Insulin-Like Growth Factor I ; metabolism ; Male ; Mesenchymal Stromal Cells ; chemistry ; Pregnancy ; Vascular Endothelial Growth Factor A ; metabolism
6.The potential role of COX-2 in cancer stem cell-mediated canine mammary tumor initiation: an immunohistochemical study.
Jian HUANG ; Di ZHANG ; Fuqiang XIE ; Degui LIN
Journal of Veterinary Science 2015;16(2):225-231
Increasing evidence suggests that cancer stem cells (CSCs) are responsible for tumor initiation and maintenance. Additionally, it is becoming apparent that cyclooxygenase (COX) signaling is associated with canine mammary tumor development. The goals of the present study were to investigate COX-2 expression patterns and their effect on CSC-mediated tumor initiation in primary canine mammary tissues and tumorsphere models using immunohistochemistry. Patterns of COX-2, CD44, octamer-binding transcription factor (Oct)-3/4, and epidermal growth factor receptor (EGFR) expression were examined in malignant mammary tumor (MMT) samples and analyzed in terms of clinicopathological characteristics. COX-2 and Oct-3/4 expression was higher in MMTs compared to other histological samples with heterogeneous patterns. In MMTs, COX-2 expression correlated with tumor malignancy features. Significant associations between COX-2, CD44, and EGFR were observed in low-differentiated MMTs. Comparative analysis showed that the levels of COX-2, CD44, and Oct-3/4 expression varied significantly among TSs of three histological grades. Enhanced COX-2 staining was consistently observed in TSs. Similar levels of staining intensity were found for CD44 and Oct-3/4, but EGFR expression was weak. Our findings indicate the potential role of COX-2 in CSC-mediated tumor initiation, and suggest that COX-2 inhibition may help treat canine mammary tumors by targeting CSCs.
Animals
;
Antigens, CD44/genetics/metabolism
;
Biomarkers, Tumor/genetics/metabolism
;
Cell Transformation, Neoplastic/*genetics/metabolism
;
Cyclooxygenase 2/*genetics/metabolism
;
Dog Diseases/*genetics/metabolism
;
Dogs
;
Female
;
Immunohistochemistry/veterinary
;
Mammary Neoplasms, Animal/*genetics/metabolism
;
Mammary Neoplasms, Experimental/*genetics/metabolism
;
Neoplastic Stem Cells/*metabolism
;
Octamer Transcription Factor-3/genetics/metabolism
;
Receptor, Epidermal Growth Factor/genetics/metabolism
;
Retrospective Studies
7.Roles of epidermal growth factor receptor signaling pathway in silicon dioxide-induced epithelial-mesenchymal transition in human pulmonary epithelial cells.
Wenwen SONG ; Zhengfu ZHANG ; Hua XIAO ; Shaojie SUN ; Hua ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(9):663-667
OBJECTIVETo investigate the effect of silicon dioxide (SiO₂) on the expression of E-cadherin, α-smooth muscle actin (α-SMA), and transforming growth factor β₁(TGF-β₁) in human pulmonary epithelial cells (A549) with epithelial-mesenchymal transition (EMT), and to study the roles of epidermal growth factor receptor (EGFR) signaling pathway in SiO₂-induced EMT in A549 cells in vitro.
METHODSAlveolar macrophages (AMs) were stimulated with 50 µg/ml SiO₂for 3, 6, 12, 18, 24, or 36 h, and the supernatants were collected to measure the expression of TGF-β₁protein by ELISA. The AM supernatant in which TGF-β₁reached the highest expression (T=18 h) was used as AM-conditioned supernatant. A549 cells were cultured in AM-conditioned supernatant and stimulated with indicated doses of SiO₂(0, 50, 100, and 200 µg/ml) for 48 h. The cell morphological changes were observed using an inverted microscope. The cells were collected at different times, and the mRNA and protein expression levels of E-cadherin, α-SMA, and EGFR were measured by RT-PCR and immunocytofluorescence, respectively.
RESULTSAfter stimulation by SiO₂, the expression level of TGF-β₁protein at each time point was significantly higher in the presence of AM supernatants than in the absence of AM supernatants (P<0.05). With the action time, the expression level of TGF-β₁protein increased at first and then decreased, and the highest level was reached at 18 h. After exposure to SiO₂, A549 cells exhibited mesenchymal characteristics, such as a spindle shape, pseudopodia change, and fibroblast-like morphology, as observed by inverted microscope, especially in the 200 µg/ml group. With increased concentration of SiO₂, the mRNA and protein expression of E-cadherin was down-regulated gradually, especially in the 200 µg/ml group, whereas the mRNA and protein expression of α-SMA and EGFR was up-regulated gradually, especially in the 200 µg/m1 group. There were significant differences between the SiO₂-treated groups (50, 100, and 200 µg/ml SiO₂) and the control group (P<0.05).
CONCLUSIONAfter being stimulated by SiO₂in vitro, AMs have significantly increased expression level of TGF-β₁protein. The AM supernatant together with SiO₂can induce the transition of pulmonary epithelial cells to mesenchymal cells, and its mechanism may be related to the EGFR signaling pathway.
Actins ; metabolism ; Cadherins ; metabolism ; Cell Line, Tumor ; Epithelial Cells ; cytology ; metabolism ; Epithelial-Mesenchymal Transition ; drug effects ; Humans ; Lung ; cytology ; Macrophages, Alveolar ; metabolism ; Receptor, Epidermal Growth Factor ; metabolism ; Signal Transduction ; Silicon Dioxide ; pharmacology ; Transforming Growth Factor beta1 ; metabolism
8.The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5.
Mi Hee PARK ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2015;47(12):e200-
Endocytosis is differentially regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) and phospholipase D (PLD). However, the relationship between HIF-1alpha and PLD in endocytosis is unknown. HIF-1alpha is degraded through the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1alpha independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1alpha, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1alpha, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1alpha in the EGFR endocytosis pathway.
Animals
;
Blood Proteins/chemistry/*metabolism
;
Endocytosis
;
Female
;
HEK293 Cells
;
HT29 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Mice, Nude
;
Neoplasms/genetics/metabolism/pathology
;
Phospholipase D/chemistry/*metabolism
;
Phosphoproteins/chemistry/*metabolism
;
Protein Structure, Tertiary
;
Receptor, Epidermal Growth Factor/*metabolism
;
Signal Transduction
;
*Up-Regulation
;
Vesicular Transport Proteins/*genetics/metabolism
;
rab5 GTP-Binding Proteins/*metabolism
9.Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin.
Chunji QUAN ; Moon Kyun CHO ; Yuan SHAO ; Laurel E MIANECKI ; Eric LIAO ; Daniel PERRY ; Taihao QUAN
Protein & Cell 2015;6(12):890-903
Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.
Adult
;
Cell Proliferation
;
Chemokine CXCL12
;
genetics
;
Epidermal Cells
;
Epidermis
;
pathology
;
Extracellular Signal-Regulated MAP Kinases
;
metabolism
;
Fibroblasts
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Keratinocytes
;
cytology
;
pathology
;
Signal Transduction
;
Skin Diseases
;
genetics
;
pathology
10.Single-chain human anti-EGFR antibody/truncated protamine fusion protein carrying Hsp47 siRNA can induce apoptosis of human hepatic stellate cells.
Yan-Li ZENG ; Xiao-Ju ZHANG ; Jia SHANG ; Gang-Qiang DING ; Yi KANG
Chinese Journal of Hepatology 2014;22(11):843-848
OBJECTIVETo construct a single-chain human anti-EGFR antibody (scFv) and truncated protamine (tP) fusion protein, ScFv/tP, carrying small interfering (si)RNA directed against the heat shock protein Hsp47, a collagen-binding glycoprotein, in order to evaluate the role Hsp47 in apoptosis of hepatic stellate cells.
METHODSA single chain of the human variable fragment was obtained by phage display and fused with the tP gene and with or without (negative control) the Hsp47 siRNA sequences. Following expression and purification of the scFv/tP fusion protein and the scFv/tPHsp47 siRNA fusion protein, internalization capabilities were tested in isolated human hepatic stellate cells and the QSG-7701 human hepatocyte cells with visualization by immunofluorescent staining. The DNA binding ability of the fusion proteins were verified by gel shift assay.Following ScFv/tP-Hsp47 siRNA fusion protein transfection into the human hepatic stellate cells, the levels of Hsp47 mRNA and protein expression were tested by RT-PCR and Western blotting; in addition, effects of siRNA-mediated silencing of Hsp47 on cell proliferation and apoptosis were analyzed by the cell counting kit (CCK)-8, flow cytometry and Western blot detection of the apoptosis marker poly (ADP-ribose) polymerase (PARP).
RESULTSIndirect immunofluorescence revealed that the ScFv/tP fusion proteins were internalized into human hepatic stellate cells but not into the QSG-7701 cells.The ScFv/tP-Hsp47 siRNA fusion protein caused reduced expression of Hsp47 mRNA and protein expression in the human hepatic stellate cells, as well as increased the cells' apoptosis remarkably.
CONCLUSIONThe ScFv/tP fusion protein can be used as a transfection reagent to deliver Hsp47 siRNA into hepatic stellate cells and to mediate apoptosis via blockade of Hsp47 expression.
Apoptosis ; Cell Proliferation ; HSP47 Heat-Shock Proteins ; genetics ; Hepatic Stellate Cells ; cytology ; Humans ; Protamines ; metabolism ; RNA, Messenger ; RNA, Small Interfering ; Receptor, Epidermal Growth Factor ; immunology ; Single-Chain Antibodies ; Transfection

Result Analysis
Print
Save
E-mail