1.Myocardial biopsy of Liwen procedure: representability and etiological diagnostic value of cardiac samples obtained by a novel technique in patients with hypertrophic cardiomyopathy.
Chao HAN ; Meng Yao ZHOU ; Jian Feng WU ; Bo WANG ; Heng MA ; Rui HU ; Lei ZUO ; Jing LI ; Xiao Juan LI ; Sheng Jun TA ; Lin Ni FAN ; Li Wen LIU
Chinese Journal of Cardiology 2022;50(4):361-368
Objective: To investigate the representability and etiological diagnostic value of myocardium samples obtained from patients with hypertrophic cardiomyopathy (HCM) by transthoracic echocardiography-guided percutaneous intramyocardial septal biopsy (myocardial biopsy of Liwen procedure). Methods: This study was a retrospective case-series analysis. Patients with HCM, who underwent myocardial biopsy of Liwen procedure and radiofrequency ablation in Xijing Hospital, Air Force Military Medical University from July to December 2019, were included. Demographic data (age, sex), echocardiographic data and complications were collected through electronic medical record system. The histological and echocardiographic features, pathological characteristics of the biopsied myocardium of the patients were analyzed. Results: A total of 21 patients (aged (51.2±14.5) years and 13 males (61.9%)) were enrolled. The thickness of ventricular septum was (23.3±4.5)mm and the left ventricular outflow tract gradient was (78.8±42.6)mmHg (1 mmHg=0.133 kPa). Eight patients (38.1%) were complicated with hypertension, 1 patient (4.8%) had diabetes, and 2 patients (9.5%) had atrial fibrillation. Hematoxylin-eosin staining of myocardial samples of HCM patients before radiofrequency ablation evidenced myocytes hypertrophy, myocytes disarray, nuclear hyperchromatism, hypertrophy, atypia, coronary microvessel abnormalities, adipocyte infiltration, inflammatory cell infiltration, cytoplasmic vacuoles, lipofuscin deposition. Interstitial fibrosis and replacement fibrosis were detected in Masson stained biopsy samples. Hematoxylin-eosin staining of myocardial samples of HCM patients after radiofrequency ablation showed significantly reduced myocytes, cracked nuclear in myocytes, coagulative necrosis, border disappearance and nuclear fragmentation. Quantitative analysis of myocardial specimens of HCM patients before radiofrequency ablation showed that there were 9 cases (42.9%) with mild myocardial hypertrophy and 12 cases (57.1%) with severe myocardial hypertrophy. Mild, moderate and severe fibrosis were 5 (23.8%), 9 (42.9%) and 7 (33.3%), respectively. Six cases (28.6%) had myocytes disarray. There were 11 cases (52.4%) of coronary microvessel abnormalities, 4 cases (19.0%) of adipocyte infiltration, 2 cases (9.5%) of inflammatory cell infiltration,6 cases (28.5%) of cytoplasmic vacuole, 16 cases (76.2%) of lipofuscin deposition. The diameter of cardiac myocytes was (25.2±2.8)μm, and the percentage of collagen fiber area was 5.2%(3.0%, 14.6%). One patient had severe replacement fibrosis in the myocardium, with a fibrotic area of 67.0%. The rest of the patients had interstitial fibrosis. The myocardial specimens of 13 patients were examined by transmission electron microscopy. All showed increased myofibrils, and 9 cases had disorder of myofibrils. All patients had irregular shape of myocardial nucleus, partial depression, mild mitochondrial swelling, fracture and reduction of mitochondrial crest, and local aggregation of myofibrillary interfascicles. One patient had hypertrophy of cardiomyocytes, but the arrangement of muscle fibers was roughly normal. There were vacuoles in the cytoplasm, and Periodic acid-Schiff staining was positive. Transmission electron microscopy showed large range of glycogen deposition in the cytoplasm, with occasional double membrane surround, which was highly indicative of glycogen storage disease. No deposition of glycolipid substance in lysozyme was observed under transmission electron microscope in all myocardial specimens, which could basically eliminate Fabry disease. No apple green substance was found under polarized light after Congo red staining, which could basically exclude cardiac amyloidosis. Conclusion: Myocardium biopsied samples obtained by Liwen procedure of HCM patients are representative and helpful for the etiological diagnosis of HCM.
Biopsy/adverse effects*
;
Cardiomegaly/pathology*
;
Cardiomyopathy, Hypertrophic/diagnosis*
;
Eosine Yellowish-(YS)
;
Fibrosis
;
Heart Defects, Congenital
;
Hematoxylin
;
Humans
;
Lipofuscin
;
Male
;
Myocardium/pathology*
;
Retrospective Studies
2.Effect of Jinzhen Oral Liquid on cough after lipopolysaccharide-induced infection in rats and mechanism.
Shu-Juan XU ; Hao GUO ; Long JIN ; Zi-Xin LIU ; Gao-Jie XIN ; Yue YOU ; Wei HAO ; Jian-Hua FU ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(17):4707-4714
This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.
Animals
;
Capsaicin/adverse effects*
;
Cough/drug therapy*
;
Dextromethorphan/adverse effects*
;
Eosine Yellowish-(YS)/adverse effects*
;
Hematoxylin
;
Lipopolysaccharides/adverse effects*
;
Male
;
Medicine, Chinese Traditional
;
Nerve Growth Factor/metabolism*
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, trkA/metabolism*
;
TRPV Cation Channels/metabolism*
;
Tropomyosin/metabolism*
;
Water/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
3.Mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination in treatment of bronchial asthma based on network pharmacology and experimental verification.
Bei-Bei ZHANG ; Meng-Nan ZENG ; Qin-Qin ZHANG ; Ru WANG ; Ju-Fang JIA ; Peng-Li GUO ; Meng LIU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2022;47(18):4996-5007
This study aims to investigate mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination(MT) in the treatment of bronchial asthma based on network pharmacology and in vivo experiment, which is expected to lay a theoretical basis for clinical application of the combination. First, the potential targets of MT in the treatment of bronchial asthma were predicted based on network pharmacology, and the "Chinese medicine-active component-target-pathway-disease" network was constructed, followed by Gene Oncology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the potential targets. Molecular docking was used to determine the binding activity of key candidate active components to hub genes. Ovalbumin(OVA, intraperitoneal injection for sensitization and nebulization for excitation) was used to induce bronchial asthma in rats. Rats were classified into control group(CON), model group(M), dexamethasone group(DEX, 0.075 mg·kg~(-1)), and MT(1∶1.5) group. Hematoxylin and eosin(HE), Masson, and periodic acid-Schiff(PAS) staining were performed to observe the effect of MT on pathological changes of lungs and trachea and goblet cell proliferation in asthma rats. The levels of transforming growth factor(TGF)-β1, interleukin(IL)6, and IL10 in rat serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein levels of mitogen-activated protein kinase 8(MAPK8), cyclin D1(CCND1), IL6, epidermal growth factor receptor(EGFR), phosphatidylinositol 3-kinase(PI3 K), and protein kinase B(Akt) by qRT-PCR and Western blot. Network pharmacology predicted that MAPK8, CCND1, IL6, and EGFR were the potential targets of MT in the treatment of asthma, which may be related to PI3 K/Akt signaling pathway. Quercetin and β-sitosterol in MT acted on a lot of targets related to asthma, and molecular docking results showed that quercetin and β-sitosterol had strong binding activity to MAPK, PI3 K, and Akt. In vivo experiment showed that MT could effectively alleviate the symptoms of OVA-induced asthma rats, improve the pathological changes of lung tissue, reduce the production of goblet cells, inhibit the inflammatory response of asthma rats, suppress the expression of MAPK8, CCND1, IL6, and EGFR, and regulate the PI3 K/Akt signaling pathway. Therefore, MT may relieve the symptoms and inhibit inflammation of asthma rats by regulating the PI3 K/Akt signaling pathway, and quercetin and β-sitosterol are the candidate active components.
Animals
;
Asthma/drug therapy*
;
Cyclin D1
;
Dexamethasone/adverse effects*
;
Drug Combinations
;
Drugs, Chinese Herbal/therapeutic use*
;
Eosine Yellowish-(YS)/adverse effects*
;
Ephedra
;
ErbB Receptors
;
Hematoxylin/therapeutic use*
;
Interleukin-10
;
Interleukin-6
;
Mitogen-Activated Protein Kinase 8/therapeutic use*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Ovalbumin/adverse effects*
;
Periodic Acid/adverse effects*
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quercetin
;
RNA, Messenger
;
Rats