1.Transformation of icariin by immobilized β-glucosidase and snailase.
Jing PENG ; Yi-hua MA ; Yan CHEN ; Cong-Yan LIU ; Xia GAO ; Jing ZHOU
Acta Pharmaceutica Sinica 2015;50(12):1652-1659
This study was performed to prepare immobilized β-glucosidase and snailase, then optimize and compare the process conditions for conversion of icariin. Immobilized β-glucosidase and snailase were prepared using crosslink-embedding method. The best conditions of the preparation process were optimized by single factor analysis and the properties of immobilized β-glucosidase and snailase were investigated. The reaction conditions including temperature, pH, substrate ratio, substrate concentration, reaction time and reusing times of the conversion of icariin using immobilized β-glucosidase or snailase were optimized. Immobilized β-glucosidase and snailase exhibited better heat stabilities and could remain about 60% activity after storage at 4 degrees C for 4 weeks. The optimized conditions for the conversion of icariin were as follows, the temperature of 50 degrees C, pH of 5.0, enzyme and substrate ratio of 1 : 1, substrate concentration of 0.1 mg x mL(-1), reaction time of 6 h for β-glucosidase and 2 h for snailase, respectively. In 5 experiments, the average conversion ratio of immobilized β-glucosidase and snailase was 70.76% and 74.97%. The results suggest an effect of promoted stabilities, prolonged lifetimes in both β-glucosidase and snailase after immobilization. The immobilized β-glucosidase and snailase exhibited a higher conversion rate and reusability compared to the free β-glucosidase and snailase. Moreover, the conversion rate of immobilized snailase was higher than that of immobilized β-glucosidase. The process of icariin conversion using immobilized β-glucosidase and snailase was moderate and feasible, which suggests that immobilized enzymes may hold a promise for industrial usage.
Enzymes, Immobilized
;
chemistry
;
Flavonoids
;
chemistry
;
Hydrolysis
;
Temperature
;
beta-Glucosidase
;
chemistry
2.Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers.
Jiao PANG ; Mengtong JIANG ; Yuxin LIU ; Mingyu LI ; Jiaming SUN ; Conggang WANG ; Xianzhen LI
Chinese Journal of Biotechnology 2022;38(12):4705-4718
Catalase is widely used in the food, medical, and textile industries. It possesses exceptional properties including high catalytic efficiency, high specificity, and environmental friendliness. Free catalase cannot be recycled and reused in industry, resulting in a costly industrial biotransformation process if catalase is used as a core ingredient. Developing a simple, mild, cost-effective, and environmentally friendly approach to immobilize catalase is anticipated to improve its utilization efficiency and enzymatic performance. In this study, the catalase KatA derived from Bacillus subtilis 168 was expressed in Escherichia coli. Following separation and purification, the purified enzyme was prepared as an immobilized enzyme in the form of enzyme-inorganic hybrid nanoflowers, and the enzymatic properties were investigated. The results indicated that the purified KatA was obtained through a three-step procedure that included ethanol precipitation, DEAE anion exchange chromatography, and hydrophobic chromatography. Then, by optimizing the process parameters, a novel KatA/Ca3(PO4)2 hybrid nanoflower was developed. The optimum reaction temperature of the free KatA was determined to be 35 ℃, the optimum reaction temperature of KatA/Ca3(PO4)2 hybrid nanoflowers was 30-35 ℃, and the optimum reaction pH of both was 11.0. The free KatA and KatA/Ca3(PO4)2 hybrid nanoflowers exhibited excellent stability at pH 4.0-11.0 and 25-50 ℃. The KatA/Ca3(PO4)2 hybrid nanoflowers demonstrated increased storage stability than that of the free KatA, maintaining 82% of the original enzymatic activity after 14 d of storage at 4 ℃, whereas the free KatA has only 50% of the original enzymatic activity. In addition, after 5 catalytic reactions, the nanoflower still maintained 55% of its initial enzymatic activity, indicating that it has good operational stability. The Km of the free KatA to the substrate hydrogen peroxide was (8.80±0.42) mmol/L, and the kcat/Km was (13 151.53± 299.19) L/(mmol·s). The Km of the KatA/Ca3(PO4)2 hybrid nanoflowers was (32.75±2.96) mmol/L, and the kcat/Km was (4 550.67±107.51) L/(mmol·s). Compared to the free KatA, the affinity of KatA/Ca3(PO4)2 hybrid nanoflowers to the substrate hydrogen peroxide was decreased, and the catalytic efficiency was also decreased. In summary, this study developed KatA/Ca3(PO4)2 hybrid nanoflowers using Ca2+ as a self-assembly inducer, which enhanced the enzymatic properties and will facilitate the environmentally friendly preparation and widespread application of immobilized catalase.
Catalase
;
Nanostructures/chemistry*
;
Hydrogen Peroxide/metabolism*
;
Enzymes, Immobilized/chemistry*
;
Catalysis
3.Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks.
Yawei CHEN ; Huijie ZHENG ; Yiting CAO ; Jiajia YANG ; Huiyun ZHOU
Chinese Journal of Biotechnology 2023;39(3):930-941
As an excellent hosting matrices for enzyme immobilization, metal-organic framework (MOFs) provides superior physical and chemical protection for biocatalytic reactions. In recent years, the hierarchical porous metal-organic frameworks (HP-MOFs) have shown great potential in enzyme immobilization due to their flexible structural advantages. To date, a variety of HP-MOFs with intrinsic or defective porous have been developed for the immobilization of enzymes. The catalytic activity, stability and reusability of enzyme@HP-MOFs composites are significantly enhanced. This review systematically summarized the strategies for developing enzyme@HP-MOFs composites. In addition, the latest applications of enzyme@HP-MOFs composites in catalytic synthesis, biosensing and biomedicine were described. Moreover, the challenges and opportunities in this field were discussed and envisioned.
Metal-Organic Frameworks/chemistry*
;
Porosity
;
Enzymes, Immobilized/chemistry*
;
Biocatalysis
;
Catalysis
4.Impact of the industrial enzyme progress on the production of chemicals.
Chinese Journal of Biotechnology 2009;25(12):1808-1818
Industrial enzymes play dual roles for the production of chemicals and biochemicals, one is to act as direct catalyst for the reaction, the other is to participate in the fermentation process to convert substrates to fermentable sugars or to make it more efficient. The review briefs the applications of industrial enzymes for chemical productions, with emphasis on direct conversion of starch and their roles in bioethanol production process, also analyzes the benefits by using new enzymes and prospects for future development.
Biocatalysis
;
Biochemistry
;
Chemical Industry
;
Enzymes
;
chemistry
;
metabolism
;
Enzymes, Immobilized
;
Ethanol
;
chemistry
;
Fermentation
5.Immobilization of catalase on Fe (III) modified collagen fiber.
Shuang CHEN ; Na SONG ; Xuepin LIAO ; Bi SHI
Chinese Journal of Biotechnology 2011;27(7):1076-1081
Fe (III) modified collagen fibers were used to immobilize catalase through the cross-linking of glutaraldehyde. The loading amount of catalase on the supporting matrix was 16.7 mg/g, and 35% enzymatic activity was remained. A series of experiments were conducted on free and immobilized catalase in order to investigate their optimal pH and temperature, and the thermal, storage and operation stability. Results suggest that the free and immobilized catalase prefer similar pH and temperature condition, which were pH 7.0 and 25 degrees C. It should be noted that the thermal stability of catalase was considerably improved after immobilization owing to the fact that the enzyme kept 30% of relative activity after incubation at 75 degrees C for 5 h. On the contrary, the free catalase was completely inactive. As for the storage stability, the immobilized catalase kept 88% of relative activity after stored at room temperature for 12 days while the free one was completely inactive under the same conditions. Moreover, the immobilized catalase preserved 57% of relative activity after being reused 26 times, exhibiting excellent operation stability. Consequently, this investigation suggests that collagen fiber can be used as excellent supporting matrix for the immobilization of catalase, and it is potential to be used for the immobilization of similar enzymes.
Catalase
;
chemistry
;
metabolism
;
Collagen
;
chemistry
;
metabolism
;
Enzymes, Immobilized
;
chemistry
;
metabolism
;
Ferric Compounds
;
chemistry
6.Covalent immobilization of glucose oxidase within organic media.
Tao ZHOU ; Xiongjun ZHU ; Jianhua SU ; Dongsheng YAO ; Daling LIU
Chinese Journal of Biotechnology 2012;28(4):476-487
Activity losing during the covalent immobilization of enzyme is a serious problem. Here we studied organic phase immobilization by using glucose oxidase (GOD) as a model. After lyophilized at optimum pH, GOD is covalently immobilized onto glutaraldhyde-activated chitosan microsphere carrier under the condition of water, 1, 4-dioxane, ether and ethanol separately. The special activities, enzyme characterization and kinetic parameters are determined. Results show that all of the organic phase immobilized GODs have higher special activities and larger K(cat) than that of aqueous phase. Under the conditions of 0.1% of glutaraldehyde, 1.6% moisture content with 80 mg of GOD added to per gram of carrier, 2.9-fold of the special activity and 3-fold of the effective activity recovery ratio were obtained, and 3-fold of the residue activity was demonstrated after 7 runs when compares 1, 4-dioxane phase immobilized GOD with water phase immobilized one. In addition, kinetic study shows that 1,4-dioxane immobilized GOD (Km(app) = 5.63 mmol/L, V(max) = 1.70 micromol/(min x mg GOD), K(cat) = 0.304 s(-1) was superior to water immobilized GOD (Km(app) = 7.33 mmol/L, V(max) = 1.02 micromol/(min x mg GOD), K(cat) = 0.221 s(-1)). All above indicated GOD immobilized in proper organic media presented a better activity with improved catalytic performance. Organic phase immobilization might be one of the ways to overcome the conformational denature of enzyme protein during covalent modification.
Chitosan
;
chemistry
;
Dioxanes
;
chemistry
;
Enzymes, Immobilized
;
chemistry
;
Freeze Drying
;
Glucose Oxidase
;
chemistry
;
Kinetics
;
Microspheres
7.Investigation of micro-aqueous covalent immobilization of horseradish peroxidase by "conformation memory".
Yixuan CAI ; Junhua CHEN ; Dongsheng YAO ; Daling LIU
Chinese Journal of Biotechnology 2009;25(12):1969-1975
We has studied the feasibility of preventing protein from denature during covalent immobilization by "conformation memory", which was achieved by freeze-drying under enzyme active conformation and cross-linked with carrier under micro-aqueous media (MAM). Horseradish peroxidase (HRP) and chitosan beads have been used as the model enzyme and carrier. The MAM consisted of 99% dioxane and 1% water. We compared the immobilized HRP under MAM with that under traditional aqueous solvent, found that the optimum temperature of both was raised to 60 degrees C, and the optimum pH was 6.5. However, the MAM-immobilized HRP had shown less activity loss during usage and six times higher activity than that immobilized under aqueous solvent. After 30 min incubation at 70 degrees C, the MAM-immobilized HRP remained 75.42% activity while the aqueous-media-immobilized enzyme only 15.4%. The MAM-immobilized HRP has shown a better operation stability with 77.69% residue activity after 5 times of repeat operation while the aqueous-media-immobilized enzyme only 16.67%. In addition, the MAM-immobilized HRP had also shown more advantages when used in phenol removal. We constructed enzyme electrodes (CS-HRP-SWCNTs/Au) to further display the different properties of the two immobilized HRP. MAM-immobilized HRP-electrode has shown two times stronger response signal to H2O2 than that immobilized under aqueous media, which indicated a better enzyme activity of MAM-immobilized HRP. Our research demonstrated that the conformation memory, to some extent, did contribute to preventing protein from denaturing when use HRP as a model, and it is feasible to immobilize enzyme by covalent cross-linking method under micro-aqueous media.
Chitosan
;
chemistry
;
Enzyme Stability
;
Enzymes, Immobilized
;
metabolism
;
Freeze Drying
;
Horseradish Peroxidase
;
chemistry
;
metabolism
;
Protein Conformation
;
Solvents
8.Biological synthesis of L-ascorbyl palmitate.
Chinese Journal of Biotechnology 2005;21(6):988-992
Biological synthesis of L-Ascorbyl Palmitate in organic system were studied in this text. The contradiction between conversion of vitamin C and concentration of L-Ascorbyl Palmitate were resolved. High conversion of vitamin C and concentration of L-Ascorbyl Palmitate were obtained by Novo435. A series of solvents(log P from -0.24 to 3.5 )were investigated for the reaction,and acetone was found to be the most suitable from the standpoint of the enzyme activity and solubility of L-ascorbic. And the equilibrium of the reaction was affected by the addition of the molecular sieves and temperature. Reaction carried out at 60 degrees C and with 20% 0.4nm molecular sieves is good for the enzyme to keep its activity and for making the equilibrium go to the product. With 1.094 g palmitic acid, 0.107 g vitamin C and 0.020 g Novo435, rotate rate of 200 r/min, the conversion of ascorbic reached 80% and the concentration of L-ascorbyl palmitate is 20 g/L after 48 h. Furthermore, reaction batch of Novo435 and substrates recycle were observed, the result indicated that Novo435 may used 4-5 times continuously with high conversion. And 6-O-unsaturated acyl L-ascorbates were synthesized through Novo435 condensation of ascorbic acid and various unsaturated fatty acids with high conversion in this text.
Ascorbic Acid
;
analogs & derivatives
;
biosynthesis
;
Catalysis
;
Enzymes, Immobilized
;
chemistry
;
metabolism
;
Lipase
;
chemistry
;
metabolism
9.Immobilization and characterization of carbonic anhydrase on the surface of hollow fiber membrane of polymethyl pentene.
Qinmei WANG ; Dihua ZHANG ; Jingxia ZHANG
Chinese Journal of Biotechnology 2009;25(7):1055-1061
We immobilized carbonic anhydrase (CA) onto the surface of membrane oxygenator of polymethyl pentene (PMP) to enhance the removal of carbon dioxide in blood by two steps. We first introduced hydroxyl groups onto PMP surface by water plasma treatment, and then coupled CA onto PMP surface by using cyanate bromide (CNBr) as a crosslinker. After plasma treatment, the contact angle with water and chemical composition of PMP surface were characterized by analysis system of surface contact angle and XPS. Using p-nitrophenyl acetate (p-NPA) as a substrate, the activity, concentration, storage stability and re-usability of immobilized CA on PMP hollow fibers were studied by ultraviolet spectrophotometer. The preliminary data showed that hydroxyl groups could be introduced on the surface of PMP by water plasma treatment, and CA with catalysis activity could be successfully introduced onto PMP surface in high immobilization efficiency. The activity of covalently immobilized CA increased with the increase of concentration of CNBr, and the maximum was 73% of the theoretical activity of CA spread on PMP surface in monolayer in studied range. Covalently immobilized CA showed higher reusability compared to physically adsorbed CA, and higher storage stability compared to free CA in solution at 37 degrees C. The method would be used potentially in the membrane oxygenator to improve the capacity of removal of carbon dioxide in blood in the future.
Carbonic Anhydrases
;
chemistry
;
metabolism
;
Enzymes, Immobilized
;
Membranes, Artificial
;
Oxygenators, Membrane
;
Polyenes
;
chemistry
10.Synthesis of diacylglycerol using immoblized regiospecific lipase in continuously operated fixed bed reactors.
Xiang-He MENG ; Pei-Long SUN ; Kai YANG ; Rong-Jun HE ; Zhong-Gui MAO
Chinese Journal of Biotechnology 2005;21(3):425-429
Diacylglycerol, DAG, because of its multifunctional and nutritional properties, attracted considerable attention recently. Enzymatic synthesis of diacylglycerols from linoleic acid was investigated in a solvent-free reaction in a continuously operated fixed bed reactors containing Lipozyme RM IM. By appropriate manipulation of the fluid-residence time, the relative proportions of the various acylglycerols in the effluent stream can be controlled. In addition, the presence of excess glycerol is effective for the removal of water produced during the esterification reactions. Under the conditions of molar ratio of linoleic acid to glycerol of 0.5, the immoblized enzyme maintained high stability and allowed the reaction to continue for 10 days without significant deterioration in enzyme activity. It was determined that the conversion of fatty acid, content of 1,3-DAG and volume efficiency of reactor reached optima under the conditions: a packaged-bed reactor(with a ratio of packed length to inner diameter of 7.8), reacting temperature at 65 degrees C, molar ratio of linoleic acid to glycerol of 0.5, and feeding flow rate of 1.2 mL/min.
Catalysis
;
Diglycerides
;
chemical synthesis
;
Enzyme Stability
;
Enzymes, Immobilized
;
chemistry
;
Lipase
;
chemistry