1.Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells.
Ju Cheol SON ; Dong Woo KANG ; Kwang Mo YANG ; Kang Yell CHOI ; Tae Gen SON ; Do Sik MIN
Experimental & Molecular Medicine 2013;45(8):e38-
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
Breast Neoplasms/*drug therapy/*enzymology/pathology
;
Cell Death/drug effects/radiation effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects/radiation effects
;
DNA Damage
;
Enzyme Activation/drug effects/radiation effects
;
Enzyme Inhibitors/*pharmacology/*therapeutic use
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Female
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism
;
Phospholipase D/*antagonists & inhibitors/metabolism
;
Radiation Tolerance/*drug effects
;
Radiation, Ionizing
;
p38 Mitogen-Activated Protein Kinases/metabolism
2.Inhibition of the cystathionine-gamma-lyase/hydrogen sulfide pathway in rat vascular smooth muscle cells by cobalt-60 gamma radiation.
Guang-zhen ZHONG ; Xin-chun YANG ; Li-ping JIA ; Feng-rong CHEN ; Ming CUI
Chinese Medical Journal 2009;122(3):326-330
BACKGROUNDRadiation is a promising treatment for in stent restenosis and restenosis following percutaneous transluminal coronary angioplasty, which has troubled interventional cardiologists for a long time. It inhibits neointima hyperplasia, vascular remodeling, and increases the mean luminal diameter. The mechanism of intracoronary brachytherapy for restenosis is not well understood. Endogenous gaseous transmitters including nitric oxide and carbon monoxide are closely related to restenosis. Hydrogen sulfide, a new endogenous gaseous transmitter, is able to inhibit the proliferation of vascular smooth muscle cells and vascular remodeling. This study aimed to clarify the effect of radiation on cystathionine-gamma-lyase/hydrogen sulfide pathway in rat smooth muscle cells.
METHODSWe studied the effect of radiation on the cystathionine-gamma-lyase/hydrogen sulfide pathway. Rat vascular smooth muscle cells were radiated with (60)Co gamma at doses of 14 Gy and 25 Gy respectively. Then the mRNA level of cystathionine-gamma-lyase was studied by quantitative reverse-transcription competitive polymerase chain reaction. Hydrogen sulfide concentration in culture medium was determined by methylene blue spectrophotometry. Cystathionine-gamma-lyase activity in vascular smooth muscle cells was also studied.
RESULTS(60)Co gamma radiation at a dose of 1 Gy did not affect the cystathionine-gamma-lyase/hydrogen sulfide pathway significantly. However, (60)Co gamma radiation at doses of 14 Gy and 25 Gy decreased the hydrogen sulfide synthesis by 21.9% (P<0.05) and 26.8% (P<0.01) respectively. At the same time, they decreased the cystathionine-gamma-lyase activity by 15.1% (P<0.05) and 20.5% (P<0.01) respectively, and cystathionine-gamma-lyase mRNA expression by 29.3% (P<0.01) and 38.2% (P<0.01) respectively.
CONCLUSIONAppropriate (60)Co gamma radiation inhibits the H(2)S synthesis by inhibiting the gene expression of cystathionine-gamma-lyase and the cystathionine-gamma-lyase activity.
Animals ; Cells, Cultured ; Cobalt Radioisotopes ; Cystathionine gamma-Lyase ; genetics ; metabolism ; Enzyme Activation ; drug effects ; radiation effects ; Gamma Rays ; Hydrogen Sulfide ; metabolism ; Male ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; drug effects ; metabolism ; radiation effects ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; drug effects ; radiation effects
3.Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets.
Jae We CHO ; Kun PARK ; Gi Ryang KWEON ; Byeong Churl JANG ; Won Ki BAEK ; Min Ho SUH ; Chang Wook KIM ; Kyu Suk LEE ; Seong Il SUH
Experimental & Molecular Medicine 2005;37(3):186-192
Ultraviolet B (UVB) irradiation of skin induces an acute inflammation. Cyclooxygenase-2 (COX-2) protein plays key roles in acute inflammation in UVB-irradiated keratinocyte cell line HaCaT. Recently, curcumin has been regarded as a promising anti-inflammatory agent due to its ability to inhibit COX-2 expression. However, it remains largely unknown whether curcumin inhibits the UVB-induced COX-2 expression in HaCaT cells. This study was undertaken to clarify the effect of curcumin on the expression of COX-2 in UVB- irradiated HaCaT cells and further determined the molecular mechanisms associated with this process. In this study, we have found that the expression of COX-2 mRNA and protein were up-regulated in UVB-irradiated HaCaT cells in a dose- and time-dependent manner. Interestingly, treatment with curcumin strongly inhibited COX-2 mRNA and protein expressions in UVB-irradiated HaCaT cells. Notably, there was effective inhibition by curcumin on UVB-induced activations of p38 MAPK and JNK in HaCaT cells. The DNA binding activity of AP-1 transcription factor was also markedly decreased with curcumin treatment in UVB-irradiated HaCaT cells. These results collectively suggest that curcumin may inhibit COX- 2 expression by suppressing p38 MAPK and JNK activities in UVB-irradiated HaCaT cells. We propose that curcumin may be applied as an effective and novel sunscreen drug for the protection of photoinflammation.
Curcumin/*pharmacology
;
Enzyme Activation/drug effects/radiation effects
;
Enzyme Inhibitors/pharmacology
;
Humans
;
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism
;
Keratinocytes/cytology/*drug effects/*radiation effects
;
Prostaglandin-Endoperoxide Synthase/*metabolism
;
Research Support, Non-U.S. Gov't
;
Transcription Factor AP-1/*metabolism
;
Ultraviolet Rays
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism
4.Change of telomerase activity in rectal cancer with chemoradiation therapy.
Hyeong Rok KIM ; Young Jin KIM ; Hyun Jong KIM ; Shin Kon KIM ; Ji Hee LEE
Journal of Korean Medical Science 2000;15(2):167-172
Telomerase, an enzyme associated with cellular immortality, is expressed by most malignant cells and is inactive in most normal somatic cells, with the exception of proliferative stem cells, germ cells and activated lymphocytes. Measuring telomerase activity clinically may provide useful diagnostic and prognostic information of cancer. The purpose of this study was to investigate the change in telomerase activity following chemoradiation in rectal cancer, which almost always produces positive enzymatic activity. A total of 24 tumor tissue samples were used in this study, consisting of 12 paired specimens before and 4 week after chemoradiation. Telomerase activity was determined by PCR-based telomeric repeat amplification protocol (TRAP) assay. The telomerase activity was positive in 10 out of 12 patients (83%) in pre-irradiated and post-irradiated states. The levels of telomerase activity was decreased in 8 out of 10 patients after chemoradiation (80%) and two cases showed no change in enzymatic activity. One case showed no activity in either sample. The other case showed no enzymatic activity in the pre-irradiated sample, but showed weak activity in the post-irradiated sample. These data indicate that telomerase activity in rectal cancer is reduced after neoadjuvant chemoradiation therapy, possibly suggesting a mechanism of downstaging following chemoradiation therapy in cancer.
Adult
;
Aged
;
Antimetabolites, Antineoplastic/administration & dosage
;
Antineoplastic Agents/administration & dosage
;
Cisplatin/administration & dosage
;
Combined Modality Therapy
;
Enzyme Activation/radiation effects
;
Enzyme Activation/drug effects
;
Female
;
Fluorouracil/administration & dosage
;
Gene Amplification
;
Human
;
Male
;
Middle Age
;
Rectal Neoplasms/radiotherapy*
;
Rectal Neoplasms/enzymology*
;
Rectal Neoplasms/drug therapy
;
Telomerase/metabolism*
5.12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity.
Jin Wook LEE ; Ho Cheol RYU ; Yee Ching NG ; Cheolmin KIM ; Jun Dong WEI ; Vikineswary SABARATNAM ; Jae Hong KIM
Experimental & Molecular Medicine 2012;44(6):378-386
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-kappaB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-kappaB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.
Anti-Inflammatory Agents, Non-Steroidal/pharmacology
;
Cell Line
;
Dual Specificity Phosphatase 1/biosynthesis/genetics
;
Enzyme Activation
;
Fatty Acids, Unsaturated/*pharmacology
;
Humans
;
Interleukin-6/*biosynthesis
;
Keratinocytes/*metabolism/radiation effects
;
NF-kappa B/metabolism
;
RNA Interference
;
RNA, Small Interfering
;
Receptors, Leukotriene B4/genetics
;
Signal Transduction/drug effects
;
Skin Diseases/drug therapy
;
*Ultraviolet Rays
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism