1.Apoptosis in Vero cells infected with Akabane, Aino and Chuzan virus.
Seong In LIM ; Chang Hee KWEON ; Dong Kun YANG ; Dong Seob TARK ; Jun Hun KWEON
Journal of Veterinary Science 2005;6(3):251-254
Akabane, Aino and Chuzan virus are arthropod-borne (arbo)viruses mainly associated with reproductive failures in cattle. We investigated apoptosis in Vero cells (C-1586) infected with Akabane, Aino and Chuzan virus. The fragmentation of chromosomal DNA was simultaneously detected with the progress of cytopathic effect from 48 hr to 72 hr post infection, depending on viruses. Although the treatment of cycloheximide blocked apoptosis in Vero cells infected with three viruses, actinomycin D did not prevent DNA oligomerization, thus indicating that de novo viral protein synthesis is critical for viral apoptosis. In addition, the activation of caspase-3 was also detected in Vero cells by indirect fluorescent assay. From the present results, it is of future interest whether apoptotic characteristics of these viruses are related to pathogenecity in vivo.
Animals
;
Apoptosis/*physiology
;
Bunyaviridae/*physiology
;
Caspase 3
;
Caspases/metabolism
;
Cercopithecus aethiops
;
Cytopathogenic Effect, Viral/*physiology
;
DNA Fragmentation/physiology
;
Dactinomycin
;
Enzyme Activation
;
Orbivirus/*physiology
;
Vero Cells
2.Role of sphingomyelin-MAPKs pathway in heat-induced apoptosis.
Hyun Sook CHUNG ; So Ra PARK ; Eun Kyung CHOI ; Heon Jin PARK ; Robert J GRIFFIN ; Chang W SONG ; HeonJoo PARK
Experimental & Molecular Medicine 2003;35(3):181-188
The role of sphingomyelinase (SMase) activation and mitogen activated protein kinases (MAPKs) activation in cellular apoptosis was investigated during the hyperthermic treatment of HL-60 human leukemia cells. Treating the cells for 1 h at 43oC caused more than 50% of cellular apoptosis within several hours. The neutral-SMase activity in the cells treated for 1 h at 42degrees C was slightly increased but decreased in the cells treated at 43degrees C or 44degrees C for the same period whereas the acid SMase activity was slightly increased after heating the cells at 42degrees C and 43degrees C and markedly increased at 44degrees C for 1 h. Treatment of cells with inhibitors of SMase activation and ceramide formation significantly reduced the heat-induced apoptosis. Three major families of mitogen-activated protein kinases (MAPKs) i.e. ERK1/2, p38 and JNK, were activated by the hyperthermic treatment of cells. Inhibition of ERK1/2 with PD98059 exerted little effect on the heat-induced apoptosis and p38 inhibition with SB203580 slightly lessened apoptosis whereas, inhibition of JNK with SP600125 markedly suppressed the heat-induced apoptosis. These results indicate that heat-shock induced the activation of SMase, particularly acid-SMase, thereby causing apoptosis and that JNK played a pivotal role in heat-induced apoptosis in HL-60 leukemia cells.
Apoptosis/*physiology
;
Enzyme Activation
;
HL-60 Cells
;
Heat
;
Human
;
Mitogen-Activated Protein Kinase Kinases/*metabolism
;
Sphingomyelin Phosphodiesterase/*metabolism
4.Effect of telomerase activation on biological behaviors of neural stem cells in rats with hypoxic-ischemic insults.
Jun-Jie MENG ; Shi-Ping LI ; Feng-Yan ZHAO ; Yu TONG ; De-Zhi MU ; Yi QU
Chinese Journal of Contemporary Pediatrics 2017;19(2):229-236
OBJECTIVETo investigate the effect of telomerase activation on biological behaviors of neural stem cells after hypoxic-ischemic insults.
METHODSThe neural stem cells passaged in vitro were divided into four groups: control, oxygen-glucose deprivation (OGD), OGD+cycloastragenol (CAG) high concentration (final concentration of 25 μM), and OGD+CAG low concentration (final concentration of 10 μM). The latter three groups were subjected to OGD. Telomerase reverse transcriptase (TERT) expression level was evaluated by Western blot. Telomerase activity was detected by telomerase repeat amplification protocol (TRAP). Cell number and neural sphere diameter were measured under a microscope. The activity of lactate dehydrogenase (LDH) was examined by chemiluminescence. Cell proliferation rate and apoptosis were detected by flow cytometry.
RESULTSAfter OGD insults, obvious injury of neural stem cells was observed, including less cell number, smaller neural sphere, more dead cells, lower proliferation rate and decreased survival rate. In CAG-treated groups, there were higher TERT expression level and telomerase activity compared with the control group (P<0.05). In comparison with the OGD group, CAG treatment attenuated cell loss (P<0.05) and neural sphere diameter decrease (P<0.05), promoted cell proliferation (P<0.05), and increased cell survival rate (P<0.05). Low and high concentrations of CAG had similar effects on proliferation and survival of neural stem cells (P>0.05). In the normal cultural condition, CAG treatment also enhanced TERT expression (P<0.05) and increased cell numbers (P<0.05) and neural sphere diameter (P<0.05) compared with the control group.
CONCLUSIONSTelomerase activation can promote the proliferation and improve survival of neural stem cells under the state of hypoxic-ischemic insults, suggesting telomerase activators might be potential agents for the therapy of hypoxic-ischemic brain injury.
Animals ; Cell Survival ; drug effects ; Enzyme Activation ; Hypoxia-Ischemia, Brain ; etiology ; Neural Stem Cells ; drug effects ; physiology ; Rats ; Sapogenins ; pharmacology ; Telomerase ; physiology
5.Role of Caspase 3 in neuronal apoptosis after acute brain injury.
Xinyu YANG ; Shuyuan YANG ; Jianning ZHANG ; Liang XUE ; Zhen HU
Chinese Journal of Traumatology 2002;5(4):250-253
OBJECTIVETo analyze the role of Caspase 3 in neuronal apoptosis after acute brain injury.
METHODSExperiments were carried out with rat diffuse brain trauma model. The neuronal DNA injury in cortex and hippocampus was observed by TUNEL stain. The mRNA and protein expressions and enzyme activation of Caspase 3 were observed by Northern blot, in situ hybridization, immunohistochemistry stain and Western blot, respectively. Special Caspase 3 enzyme inhibitor was used to observe the therapeutic effect.
RESULTSTUNEL positive neurons appeared 2 hours after severe trauma, peaked at 1 day and lasted for 7 days. Northern blot showed that the Caspase 3 mRNA expression was increased and peaked at 1 day, about twice higher than the control. In the area of cortex and hippocampus, positive mRNA staining neurons appeared most distinct on one day. With the antibody for Caspase 3 P20 subunit, the active Caspase 3 expression peaked at 1-3 days. The electrophoresis band of PARP degradation would be seen by Western blot. Caspase 3 enzyme inhibitor could reduce apoptotic neuronal death without any effect on Caspase 3 P20 subunit expression.
CONCLUSIONSAfter brain trauma, Caspase 3 mRNA and protein expressions and enzyme activation are enhanced in combination with neuronal apoptosis. Special Caspase 3 enzyme inhibitor can apparently decrease the neuronal apoptosis.
Acute Disease ; Animals ; Apoptosis ; physiology ; Brain Injuries ; enzymology ; physiopathology ; Caspase 3 ; Caspases ; metabolism ; Enzyme Activation ; Enzyme Inhibitors ; pharmacology ; Nervous System ; physiopathology ; Neurons ; enzymology ; physiology ; RNA, Messenger ; metabolism ; Rats ; Rats, Wistar
6.Hydrogen Peroxide-Induced Cell Death in a Human Retinal Pigment Epithelial Cell Line, ARPE-19.
Min Ho KIM ; Jin CHUNG ; Ji wook YANG ; Sang Moon CHUNG ; No Hoon KWAG ; Jin Seong YOO
Korean Journal of Ophthalmology 2003;17(1):19-28
The loss of retinal pigment epithelium (RPE) with aging is related to age-related macular degeneration (AMD). This study was conducted to investigate the mechanism of hydrogen peroxide (H2O2) induced cell death in a human retinal pigment epithelial cell line, ARPE-19. Hydrogen peroxide was added at different concentrations to ARPE-19 cells and cultured. The cytotoxicity was assayed by mitochondrial function using 3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyl tetrazolium bromide (MTT) testing. The patterns of cell damage were assessed using an acridine orange-ethidium bromide differential staining method, in situ end labeling (ISEL) assay and transmission electron microscopy (TEM). Catalase, a major antioxidant, was used to prevent cell death. The cleavage of procaspase 3 and poly (ADP-ribose) polymerase (PARP) was determined by western blot analysis. Hydrogen peroxide significantly induced cell death in ARPE-19 cells, whereas pretreatment of the cells with catalase prevented cell death. Application of the ISEL assay and acridine orange/ethidium bromide staining demonstrated that the H2O2-induced cell death occurred by an apoptotic mechanism at lower concentrations of H2O2 (400, 500, 600 microM), whereas higher concentrations of H2O2 induced necrosis rather than apoptosis. Caspase 3 was associated with the apoptotic pathway in human RPE cell death. Western blot analysis confirmed caspase 3 activation and cleavage of substrate proteins in ARPE-19 cells treated with an H2O2 concentration of 600 microM. These results indicate that treatment with H2O2 induces apoptotic and necrotic cell death in ARPE-19, and that caspase 3 is associated with apoptotic cell death. Therefore, H2O2 may induce the destruction of RPE cells in AMD by the combined effects of apoptosis and necrosis.
Apoptosis
;
Caspases/metabolism
;
Catalase/pharmacology
;
Cell Line
;
Cell Survival/drug effects
;
Enzyme Activation
;
Human
;
Hydrogen Peroxide/*pharmacology
;
Necrosis
;
Pigment Epithelium of Eye/*drug effects/enzymology/pathology/*physiology
7.Activation of PKCdelta by tyrosine phosphorylation in rat parotid acinar cells.
Cyril BENES ; Yue ZHENG ; Stephen P SOLTOFF
Journal of Korean Medical Science 2000;15(Suppl):S40-S41
Receptor- and nonreceptor-mediated stimuli produce increases in both PKCdelta tyrosine phosphorylation and activity in rat parotid acinar cells and other cells. In vivo and in vitro increases and decreases in tyrosine phosphorylation resulted in increases and decreases, respectively, of PKCdelta activity. These studies demonstrated that increases in PKCdelta activity by G protein-coupled receptors and other stimuli were controlled by alterations in tyrosine phosphorylation.
Animal
;
Enzyme Activation/physiology
;
Isoenzymes/metabolism*
;
Male
;
Parotid Gland/enzymology*
;
Phosphorylation
;
Protein Kinase C/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Tyrosine/metabolism*
8.Nitrosative stress in human spermatozoa causes cell death characterized by induction of mitochondrial permeability transition-driven necrosis.
Pamela URIBE ; María E CABRILLANA ; Miguel W FORNÉS ; Favián TREULEN ; Rodrigo BOGUEN ; Vladimir ISACHENKO ; Evgenia ISACHENKO ; Raúl SÁNCHEZ ; Juana V VILLEGAS
Asian Journal of Andrology 2018;20(6):600-607
Peroxynitrite is a highly reactive nitrogen species and a potent inducer of apoptosis and necrosis in somatic cells. Peroxynitrite-induced nitrosative stress has emerged as a major cause of impaired sperm function; however, its ability to trigger cell death has not been described in human spermatozoa. The objective here was to characterize biochemical and morphological features of cell death induced by peroxynitrite-mediated nitrosative stress in human spermatozoa. For this, spermatozoa were incubated with and without (untreated control) 3-morpholinosydnonimine (SIN-1), in order to generate peroxynitrite. Sperm viability, mitochondrial permeability transition (MPT), externalization of phosphatidylserine, DNA oxidation and fragmentation, caspase activation, tyrosine nitration, and sperm ultrastructure were analyzed. The results showed that at 24 h of incubation with SIN-1, the sperm viability was significantly reduced compared to untreated control (P < 0.001). Furthermore, the MPT was induced (P < 0.01) and increment in DNA oxidation (P < 0.01), DNA fragmentation (P < 0.01), tyrosine nitration (P < 0.0001) and ultrastructural damage were observed when compared to untreated control. Caspase activation was not evidenced, and although phosphatidylserine externalization increased compared to untreated control (P < 0.001), this process was observed in <10% of the cells and the gradual loss of viability was not characterized by an important increase in this parameter. In conclusion, peroxynitrite-mediated nitrosative stress induces the regulated variant of cell death known as MPT-driven necrosis in human spermatozoa. This study provides a new insight into the pathophysiology of nitrosative stress in human spermatozoa and opens up a new focus for developing specific therapeutic strategies to better preserve sperm viability or to avoid cell death.
Adult
;
Caspases/metabolism*
;
Cell Death
;
Enzyme Activation
;
Humans
;
Male
;
Mitochondria/pathology*
;
Necrosis
;
Nitrosative Stress/physiology*
;
Permeability
;
Peroxynitrous Acid/pharmacology*
;
Phosphatidylserines/metabolism*
;
Spermatozoa/ultrastructure*
9.Effects of power-frequency magnetic fields exposure on phosphorylation and enzymatic activity of stress-activated protein kinase and its upstream kinase.
Wenjun SUN ; Yingnian YU ; Yiti FU ; Huai CHIANG ; Haiyang XIE ; Deqiang LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2002;20(4):256-259
OBJECTIVETo study the effects of 50 Hz power-frequency magnetic fields on signal transduction pathway of stress-activated protein kinase(SAPK), and explore the cellular signal transduction mechanism of the biological effects induced by power-frequency magnetic fields.
METHODSChinese hamster lung(CHL) cell line was exposed to power-frequency magnetic fields with two intensities for different exposure durations. The cytoplasmic protein was extracted and the phosphorylated portion of SAPK and SEK1/MKK4 was measured with Western blotting analysis. The SAPK enzymatic activity was measured by the solid-phase kinase assay in cells exposed to power-frequency magnetic fields for 15 min.
RESULTSBoth 0.4 mT and 0.8 mT power-frequency magnetic fields could enhance the phosphorylation of SAPK in a time-relative course manner, and reached the maximum extent at 15 min, with an increase of 20% and 17% respectively. The solid-phase kinase assay showed that the enzymatic activities of SAPK were also increased, which were 2.9 +/- 0.4 and 2.1 +/- 0.9 times of control respectively. However, the duration of SAPK phosphorylation induced by 0.8 mT was longer than that of 0.4 mT, while the duration and extent of SAPK dephosphorylation was remarkably shorter than that of 0.4 mT. The power-frequency magnetic fields under equal conditions could not phosphorylate(activate) the SEK1/MKK4.
CONCLUSIONPower-frequency magnetic fields could activate the SAPK, but not SEK1/MKK4. It is suggested that power-frequency magnetic fields may activate SAPK signal transduction pathway through a kinase other than SEK1/MKK4. The activation mechanism of SAPK of power-frequency magnetic fields needs to be identified in more detail.
Animals ; Cell Line ; Cricetinae ; Cricetulus ; Enzyme Activation ; radiation effects ; Lung ; metabolism ; radiation effects ; MAP Kinase Kinase 4 ; metabolism ; MAP Kinase Signaling System ; physiology ; radiation effects ; Magnetics ; Phosphorylation
10.ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes.
Kai-zheng GONG ; Zhen-gang ZHANG ; Ai-hua LI ; Yi-feng HUANG ; Ping BU ; Feng DONG ; Jian LIU
Chinese Medical Journal 2004;117(3):395-400
BACKGROUNDThe activation of extracellular signal-regulated kinase1/2 (ERK1/2) has been shown to be important signaling pathway in the ischemic preconditioning (IPC) response. Recently, some studies suggest a key role for the mitochondrial ATP-sensitive potassium channel (mKATP) as both a trigger and an end effector of acute and delayed protection of IPC. Hence, this study was undertaken to elucidate the relationship between mKATP and ERK1/2 in the delayed protection mechanism of anoxic preconditioning (APC).
METHODSAn APC model was established using cultured neonatal rat cardiomyocytes. Pharmacological agents [diazoxide, 5-hydroxydecanoate (5-HD), 2-mercaptopropionylglycine (MPG), and PD98059] were used to modulate mKATP and ERK1/2 activation. Cellular injury was evaluated by measuring cellular superoxide dismutase (SOD) activity, cell viability, and lactate dehydrogenase (LDH) release. The generation of cellular reactive oxygen species (ROS) and the activation of ERK1/2 were determined at different time points starting from the beginning of preconditioning with anoxia or diazoxide (an mKATP opener).
RESULTSCell viability and SOD activity in the APC [(81.9 +/- 11.4)%, (13.6 +/- 3.7) U/L] and diazoxide [(79.2 +/- 12.4)%, (16.5 +/- 4.6) U/L] groups were significantly higher than in the anoxia/reoxygenation (A/R) [(42.2 +/- 7.3)%, (8.8 +/- 2.8) U/L] group (all P < 0.01). LDH activity in the APC group [(101.9 +/- 18.9) U/L] and diazoxide group [(97.5 +/- 17.7) U/L] was significantly lower than in the A/R group [(250.5 +/- 43.6) U/L] (all P < 0.01). Both APC and diazoxide simultaneously facilitated intracellular ROS generation and rapid ERK1/2 activation. But the effects of APC and diazoxide were remarkedly attenuated by 5-HP (an mKATP blocker) and by MPG (a free radical scavenger). In addition, the ERK1/2 inhibitor PD98059 also abolished the cellular protective effects induced by diazoxide.
CONCLUSIONmKATP may mediate ERK1/2 activation during anoxia preconditioning by generating ROS, which then triggers the delayed protection of APC in rat cardiomyocytes.
Animals ; Animals, Newborn ; Cells, Cultured ; Enzyme Activation ; Ischemic Preconditioning ; Mitogen-Activated Protein Kinases ; metabolism ; Myocytes, Cardiac ; physiology ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism