1.Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs
Sayed Samim RAHPAYA ; Shinobu TSUCHIAKA ; Mai KISHIMOTO ; Mami OBA ; Yukie KATAYAMA ; Yuka NUNOMURA ; Saki KOKAWA ; Takashi KIMURA ; Atsushi KOBAYASHI ; Yumi KIRINO ; Tamaki OKABAYASHI ; Nariaki NONAKA ; Hirohisa MEKATA ; Hiroshi AOKI ; Mai SHIOKAWA ; Moeko UMETSU ; Tatsushi MORITA ; Ayako HASEBE ; Keiko OTSU ; Tetsuo ASAI ; Tomohiro YAMAGUCHI ; Shinji MAKINO ; Yoshiteru MURATA ; Ahmad Jan ABI ; Tsutomu OMATSU ; Tetsuya MIZUTANI
Journal of Veterinary Science 2018;19(3):350-357
Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.
Animals
;
Birds
;
Cattle
;
Cockroaches
;
Diarrhea Viruses, Bovine Viral
;
Diarrhea
;
Diptera
;
Disease Reservoirs
;
Disease Vectors
;
Enterovirus
;
Enterovirus, Bovine
;
Genome
;
Insects
;
Neospora
;
Polymerase Chain Reaction
;
Real-Time Polymerase Chain Reaction
;
Rodentia
;
Salmonella enterica
;
Virulence Factors
2.Establishment and Preliminary Application of the SYBR Green I Real-time PCR Assay for Detection of the Bovine Enterovirus.
Tong ZHU ; Guimin ZHAO ; Furao SHEN ; Hou PEILI ; Hongmei WANG ; Jie LI ; Hongbin HE
Chinese Journal of Virology 2015;31(5):488-493
The bovine enterovirus (BEV) is a pathogen found the digestive tracts of cattle. Recently, the BEV was discovered in cattle in a province in China. A rapid and effective detection method for the BEV is essential. An assay was carried out using two specific primers designed to amplify a highly conserved sequence of the 3D gene. A recombinant plasmid containing the target gene 3D was constructed as a standard control. The limit of detection of the reaction was 7.13 x 10(1) plasmid copies/μL of initial templates, which was tenfold more sensitive than the conventional reverse-transcription-polymerase chain reaction (RT-PCR). Moreover, the assay was highly specific because all negative controls and other viruses of clinical relevance did not develop positive results. Assay performance on field samples was evaluated on 44 (41 diarrhea and 3 aerosol) samples and compared with the conventional RT-PCR assay. Sixteen diarrhea samples were positive (16/41, 39. 02%) and 3 aerosol samples were positive (3/3, 100%). Preliminary results for clinical detection showed that the SYBR Green I real-time PCR assay was highly sensitive, specific and reproducible. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications for epidemics and in BEV research.
Animals
;
Cattle
;
Cattle Diseases
;
diagnosis
;
virology
;
DNA Primers
;
chemistry
;
genetics
;
Enterovirus Infections
;
diagnosis
;
veterinary
;
virology
;
Enterovirus, Bovine
;
genetics
;
isolation & purification
;
Organic Chemicals
;
chemistry
;
Real-Time Polymerase Chain Reaction
;
methods
;
Sensitivity and Specificity