1.Evaluation of the Usefulness of Selective Chromogenic Agar Medium (ChromID VRE) and Multiplex PCR Method for the Detection of Vancomycin-resistant Enterococci.
Do Hoon KIM ; Jae Hee LEE ; Jung Sook HA ; Nam Hee RYOO ; Dong Seok JEON ; Jae Ryong KIM
The Korean Journal of Laboratory Medicine 2010;30(6):631-636
BACKGROUND: Accurate and early detection of vancomycin-resistant enterococci (VRE) is critical for controlling nosocomial infection. In this study, we evaluated the usefulness of a selective chromogenic agar medium and of multiplex PCR for detection of VRE, and both these techniques were compared with the conventional culture method for VRE detection. METHODS: We performed the following 3 methods for detecting VRE infection in stool specimens: the routine culture method, culturing in selective chromogenic agar medium (chromID VRE, bioMerieux, France), and multiplex PCR using the Seeplex(R) VRE ACE Detection kit (Seegene Inc., Korea) with additional PCR for vanC genes. RESULTS: We isolated 109 VRE strains from 100 stool specimens by the routine culture method. In chromID VRE, all the isolates showed purple colonies, including Enterococcus gallinarum and E. raffinosus, which were later identified using the Vitek card. All VRE isolates were identified by the multiplex PCR method; 100 were vanA-positive E. faecium, 8 were vanA- and vanC-1-positive E. gallinarum, and 1 was vanA-positive E. raffinosus. CONCLUSIONS: For VRE surveillance, culturing the isolates in chromID VRE after broth enrichment appears to be an accurate, rapid, and easy method for routine screening test. Multiplex PCR is relatively expensive and needs skilled techniques for detecting VRE, but it can be an auxiliary tool for rapid detection of genotype during a VRE outbreak.
Agar/chemistry
;
Chromogenic Compounds/*chemistry
;
Enterococcus/drug effects/genetics/*isolation & purification
;
Enterococcus faecium/genetics/isolation & purification
;
Feces/microbiology
;
Genotype
;
Humans
;
Phenotype
;
Polymerase Chain Reaction/*methods
;
Reagent Kits, Diagnostic
;
*Vancomycin Resistance
2.Molecular characterization of vancomycin-resistant Enterococci.
He WANG ; Ying-Chun XU ; Xiu-Li XIE ; Peng WANG ; Ren-Yuan ZHU ; Xiao-Jiang ZHANG ; Hui WANG ; Min-Jun CHEN
Acta Academiae Medicinae Sinicae 2008;30(5):521-524
OBJECTIVETo investigate the homology and resistant mechanism of vancomycin-resistant Enterococci (VRE) isolates.
METHODSA total of 9 VRE isolates were collected from 2006 to 2007 at PUMC hospital. The susceptibility of these isolates to 10 different antibiotics including vancomycin was tested by E-test. These strains were processed by brain heart infusion agar screening in the presence of vancomycin (6 microg/ml), and were analyzed for genotypic characteristics using the multiplex PCR. The homology of the isolates was determined by pulsed-field gel electrophoresis (PFGE).
RESULTSAll the 9 VRE isolates were identified as Enterococci faecium. The visual analysis of PFGE patterns revealed 6 different PFGE types. The vanA gene was confirmed by PCR and sequencing in 9 VRE isolates, which were consistent between phenotype and genotype for glycopeptides resistance.
CONCLUSIONSOnly vanA genotype was detected in PUMC hospital. Clonal dissemination, horizontal gene transfer, and the selective pressure of antimicrobial agents may contribute to the increase of VRE.
Bacterial Proteins ; genetics ; Bacterial Typing Techniques ; Drug Resistance, Multiple, Bacterial ; Enterococcus faecium ; classification ; drug effects ; genetics ; isolation & purification ; Gram-Positive Bacterial Infections ; microbiology ; Humans ; Vancomycin Resistance
3.Identification of tetracenomycin X from a marine-derived Saccharothrix sp. guided by genes sequence analysis.
Bin LIU ; Yi TAN ; Mao-Luo GAN ; Hong-Xia ZHOU ; Yi-Guang WANG ; Yu-Hui PING ; Bin LI ; Zhao-Yong YANG ; Chun-Ling XIAO
Acta Pharmaceutica Sinica 2014;49(2):230-236
The crude extracts of the fermentation broth from a marine sediment-derived actinomycete strain, Saccharothrix sp. 10-10, showed significant antibacterial activities against drug-resistant pathogens. A genome-mining PCR-based experiment targeting the genes encoding key enzymes involved in the biosynthesis of secondary metabolites indicated that the strain 10-10 showed the potential to produce tetracenomycin-like compounds. Further chemical investigation of the cultures of this strain led to the identification of two antibiotics, including a tetracenomycin (Tcm) analogs, Tcm X (1), and a tomaymycin derivative, oxotomaymycin (2). Their structures were identified by spectroscopic data analysis, including UV, 1D-NMR, 2D-NMR and MS spectra. Tcm X (1) showed moderate antibacterial activities against a number of drug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) pathogens, with the MIC values in the range of 32-64 microg x mL(-1). In addition, 1 also displayed significant cytotoxic activities against human cancer cell lines, including HL60 (leukemia), HepG2 (liver), and MCF-7 (breast) with the IC 50 values of 5.1, 9.7 and 18.0 micromol x L(-1), respectively. Guided by the PCR-based gene sequence analysis, Tcm X (1) and oxotomaymycin (2) were identified from the genus of Saccharothrix and their 13C NMR data were correctly assigned on the basis of 2D NMR spectroscopic data analysis for the first time.
Actinomycetales
;
chemistry
;
genetics
;
Anti-Bacterial Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Antineoplastic Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Benzodiazepinones
;
chemistry
;
isolation & purification
;
pharmacology
;
Cell Line, Tumor
;
Data Mining
;
methods
;
Drug Resistance, Bacterial
;
Enterococcus faecalis
;
drug effects
;
Fermentation
;
Genomics
;
Humans
;
Inhibitory Concentration 50
;
Marine Biology
;
Methicillin-Resistant Staphylococcus aureus
;
drug effects
;
Microbial Sensitivity Tests
;
Molecular Structure
;
Naphthacenes
;
chemistry
;
isolation & purification
;
pharmacology
;
Phylogeny
;
Staphylococcus epidermidis
;
drug effects
4.First Case Report of Human Infection With Ochrobactrum tritici Causing Bacteremia and Cholecystitis.
Duck Jin HONG ; Keon Han KIM ; Jung Ok KIM ; Jun Sung HONG ; Seok Hoon JEONG ; Kyungwon LEE
Annals of Laboratory Medicine 2016;36(3):278-280
No abstract available.
Aged
;
Anti-Bacterial Agents/pharmacology/therapeutic use
;
Bacteremia/blood/*diagnosis/microbiology
;
C-Reactive Protein/analysis
;
Cholecystitis/blood/cerebrospinal fluid/microbiology
;
Electrophoresis, Gel, Pulsed-Field
;
Enterococcus faecium/drug effects/isolation & purification/metabolism
;
Humans
;
Male
;
Microbial Sensitivity Tests
;
Microscopy, Electron, Scanning
;
Ochrobactrum/drug effects/isolation & purification/*metabolism
;
RNA, Ribosomal, 16S/analysis/genetics/metabolism
;
Sequence Analysis, DNA
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.Characterization of a Vancomycin-resistant Enterococcus faecium Outbreak Caused by 2 Genetically Different Clones at a Neonatal Intensive Care Unit.
Wee Gyo LEE ; Sun Hyun AHN ; Min Kwon JUNG ; Hye Young JIN ; Il Joong PARK
Annals of Laboratory Medicine 2012;32(1):82-86
In July 2010, we identified an outbreak of vancomycin-resistant enterococci (VRE) in our 26-bed neonatal intensive care unit. We performed an epidemiological investigation after clinical cultures of 2 neonates were positive for VRE. Identification, susceptibility testing, and molecular characterization were performed. Cultures of 3 surveillance stool samples of inpatients and 5 environmental samples were positive for VRE. All isolates were identified as Enterococcus faecium containing the vanA gene. Two distinct clones were identified by performing pulsed-field gel electrophoresis. The 2 clones exhibited different pulsotypes, but they represented identical Tn1546 types. Two sequence types, ST18 and ST192, were identified among all of the isolates with multilocus sequence typing. Our investigation determined that the outbreak in the neonatal intensive care unit was caused by 2 genetically different clones. The outbreak may have occurred through clonal spread and horizontal transfer of the van gene.
Anti-Bacterial Agents/pharmacology
;
Bacterial Proteins/genetics
;
Bacterial Typing Techniques
;
Carbon-Oxygen Ligases/genetics
;
DNA, Bacterial/analysis
;
*Disease Outbreaks
;
Electrophoresis, Gel, Pulsed-Field
;
Enterococcus faecium/drug effects/*genetics/isolation & purification
;
Feces/microbiology
;
Genotype
;
Gram-Positive Bacterial Infections/diagnosis/epidemiology/*microbiology
;
Humans
;
Infant, Newborn
;
Intensive Care Units, Neonatal
;
Male
;
Multilocus Sequence Typing
;
Vancomycin/pharmacology
;
*Vancomycin Resistance