1.Knockdown the expression of ku70 and lig4 in HEK293T cells by CRISPR/Cas13 system.
Haoqiang WANG ; Guoling LI ; Guangyan HUANG ; Zicong LI ; Enqin ZHENG ; Zheng XU ; Huaqiang YANG ; Zhenfang WU ; Xianwei ZHANG ; Dewu LIU
Chinese Journal of Biotechnology 2020;36(7):1414-1421
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system is a hotspot of gene editing and gene expression research, in which CRISPR/Cas13 system provides a new direction for RNA interference and editing. In this study, we designed and synthesized the corresponding gRNAs of CRISPR/Cas13a and CRISPR/Cas13b systems in non-homologous end joining (NHEJ) pathway, such as Ku70 and Lig4, and then detected the expression of ku70 and lig4 in HEK293T cells. The CRISPR/Cas13a system could efficiently knockdown the mRNA expression of ku70 and lig4 more than 50%, and CRISPR/Cas13b system also suppressed ku70 and lig4 about 92% and 76%, respectively. Also, CRISPR/Cas13a, b systems could down-regulate Ku70 and Lig4 proteins level to 68% and 53%, respectively. The study demonstrates that the CRISPR/Cas13 system could effectively knockdown the expression of RNA and protein in HEK293T cells, providing a new strategy for gene function and regulation research.
CRISPR-Cas Systems
;
DNA Ligase ATP
;
genetics
;
Gene Expression Regulation
;
genetics
;
Gene Knockdown Techniques
;
HEK293 Cells
;
Humans
;
Ku Autoantigen
;
genetics