1.Iron Element and Parkinson’s Disease
Chunyang DONG ; Defu HE ; Enqi WENG
Journal of Environment and Health 1993;0(01):-
Iron is abnormally accumulated in the substantia nigra pars compacta (SNc) in Parkinson’s disease (PD) patients. The disorder of iron metabolism and the neurotoxicity induced by excessive iron are proved in PD patients, and these indicate that iron is closely correlative with PD. This article presented an overview of research advances of three aspects including the distribution and metabolism of iron in the brain, the neurotoxicity of iron, and the relationship between the disorder of iron metabolism in central nervous system and PD.
2.Effects of extremely low frequency electromagnetic field and its combination with lead on the antioxidant system in mouse.
Yun LIU ; Enqi WENG ; Ying ZHANG ; Rong HONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2002;20(4):263-265
OBJECTIVETo study the effects of extremely low frequency electromagnetic field(ELF EMF) and its combination with lead on the antioxidant system in mouse brain and liver tissues.
METHODMice were exposed to a 50 Hz sinusoidal 0.2 mT or 6.0 mT EMF for 2 weeks. At the same time, some groups were exposed to lead(50 mg/kg). After the exposure, the antioxidant system and cell membrane fluidity in brain and liver were measured.
RESULTSMalondiadehyde(MDA) content in brain and liver increased from the control levels of (1.33 +/- 0.12) and (3.95 +/- 0.21) nmol/mg pro to (1.35 +/- 0.09) and (6.15 +/- 0.28) nmol/mg pro respectively following 0.2 mT exposure, and to (3.98 +/- 0.10) and (6.50 +/- 0.79) nmol/mg pro respectively following 6.0 mT exposure. Total antioxidant capability(T-AOC) in brain and liver decreased from the control levels of (4.39 +/- 0.48) and (2.45 +/- 0.21) U/mg pro to (3.99 +/- 0.39) and (1.92 +/- 0.32) U/mg pro respectively following 0.2 mT, and to (3.12 +/- 0.37) and (1.57 +/- 0.14) U/mg pro respectively following 6.0 mT. GSH content decreased only in liver tissue from the control level of (194.60 +/- 20.93) mg/g pro to (189.24 +/- 5.61) mg/g pro(0.2 mT) and (153.04 +/- 1.18) mg/g pro(6.0 mT). Cellular membrane fluidity decreased from the control levels of (1.396 +/- 0.040) and (2.899 +/- 0.552) to (1.224 +/- 0.190) and (1.894 +/- 0.0761) (0.2 mT), (1.159 +/- 0.179) and (1.516 +/- 0.204)(6.0 mT) respectively. Compared with single EMF exposure(6.0 mT), EMF combined with lead exposure induced remarkable increase in MDA, GSH content and T-AOC and decrease in cell membrane fluidity both in the brain and liver, and increase in SOD activity only in liver.
CONCLUSIONELF EMF might alter the metabolism of free radicals, decrease anti-oxidant capability and enhance lipid peroxidation. The combination of EMF with lead showed synergic effects on lipid peroxidation.
Animals ; Antioxidants ; metabolism ; Brain ; drug effects ; metabolism ; radiation effects ; Electromagnetic Fields ; adverse effects ; Glutathione ; analysis ; Lead ; toxicity ; Lipid Peroxidation ; drug effects ; radiation effects ; Liver ; drug effects ; metabolism ; radiation effects ; Membrane Fluidity ; drug effects ; radiation effects ; Mice ; Superoxide Dismutase ; metabolism