1.Bone functions as a novel endocrine organ in energy metabolism.
Xiang CHEN ; Hao-ming TIAN ; Fu-xing PEI ; Xi-jie YU
Chinese Medical Journal 2012;125(22):4117-4121
3.Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family.
Rui WANG ; Yong-sheng CHANG ; Fu-de FANG
Acta Academiae Medicinae Sinicae 2009;31(6):773-777
Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.
Animals
;
Energy Metabolism
;
physiology
;
Humans
;
Transcription Factors
;
metabolism
4.Research progress in measurement of human basal metabolic rate.
Jiayue ZHANG ; Zhengwen TIAN ; Hongzhuan TAN
Journal of Central South University(Medical Sciences) 2018;43(7):805-810
Basal metabolic rate (BMR) is of great significance to the setting of daily energy requirements and the scientific diet guidance for the population. There are 3 kinds of measurement methods for BMR, including the direct calorimetry, the indirect calorimetry, and the equation estimation. The direct calorimetry method is difficult to implement and is only used in some special populations. The indirect calorimetry and the equation estimation are two methods that are currently used commonly. The indirect calorimetry is highly accurate and suitable for individual for basal metabolic measurement or datum collection via equation estimation. The equation estimation is simple and convenient, which is suitable for large samples.
Basal Metabolism
;
physiology
;
Biomedical Research
;
Calorimetry, Indirect
;
Energy Metabolism
;
Humans
5.Application of energy cost in evaluating energy expenditure in multi-ball practice with table tennis players.
Yong-Ming LI ; Bo LI ; Xin-Xin WANG ; Yan WANG ; Nan GU
Chinese Journal of Applied Physiology 2019;35(4):331-335
OBJECTIVE:
To investigate the feasibility of applying the measure of energy cost, utilized widely in cyclic sports, in table tennis multi-ball practice.
METHODS:
Eleven collegiate table tennis players volunteered (18±1 yrs, 177±2 cm, 71±3 kg, approximately 10 yrs' training experience) to participate in one graded exercise test on treadmill, and two step tests (forehand and backhand, 3 min × 6, 35~85 stroke/min). A portable spirometric system and heart rate monitor were utilized for the three trials. Earlobe blood samples were collected and analyzed prior to and post the test. Energy cost was calculated for one stroke at each stroke frequency.
RESULTS:
The energy cost of loop drive multi-ball practice was decreased with increased stroke frequency (P<0.05). The energy cost of forehand loop drive was higher than backhand, with the difference significant at 35, 45, 55, 65, and 85 stroke·min (P<0.05). The function between energy cost and frequency were y=166.4x (R=0.9731), and y=33.21x (R=0.8423), respectively, where y was energy cost, and x was stroke frequency.
CONCLUSION
The measure of energy cost utilized in cyclic sports could be applied to evaluate the energy expenditure in table tennis multi-ball practice of single technique, and indicate the stroke efficiency of table tennis muti-ball practice with different stroke frequencies.
Adolescent
;
Energy Metabolism
;
Exercise Test
;
Humans
;
Tennis
;
physiology
;
Young Adult
6.Essential role of mitochondria in tumorigenesis.
Chunling TANG ; Zhonghuai XIANG ; Hongjuan CUI
Chinese Journal of Biotechnology 2013;29(11):1548-1557
Tumorigenesis is a complex process that is regulated by a variety of network signals. With the continuous development of the process, tumor cells gradually exhibit lots of hallmarks.Tumor cells have the characteristics of unlimited proliferation, resistance to apoptosis, evading immune surveillance, among others. As a unique organelles, mitochondria play an important role in cellular energy metabolism, reactive oxygen species producing and apoptosis process. Particularly, mitochondria have a close relationship with tumor development. In this review, we focus on the essential role of mitochondria in tumor cells development.
Animals
;
Energy Metabolism
;
Humans
;
Mitochondria
;
metabolism
;
physiology
;
Neoplasms
;
etiology
;
genetics
;
physiopathology
;
Tumor Microenvironment
;
physiology
7.Relationship between Notch signaling pathway and mitochondrial energy metabolism.
Qi SHEN ; Yufan YUAN ; Jinlan JIN
Chinese Critical Care Medicine 2023;35(12):1321-1326
Notch signaling pathway is a highly conserved signaling pathway in the process of evolution. It is composed of three parts: Notch receptor, ligand and effector molecules responsible for intracellular signal transduction. It plays an important role in cell proliferation, differentiation, development, migration, apoptosis and other processes, and has a regulatory effect on tissue homeostasis and homeostasis. Mitochondria are the sites of oxidative metabolism in eukaryotes, where sugars, fats and proteins are finally oxidized to release energy. In recent years, the regulation of Notch signaling pathway on mitochondrial energy metabolism has attracted more and more attention. A large number of data have shown that Notch signaling pathway has a significant effect on mitochondrial energy metabolism, but the relationship between Notch signaling pathway and mitochondrial energy metabolism needs to be specifically and systematically discussed. In this paper, the relationship between Notch signaling pathway and mitochondrial energy metabolism is reviewed, in order to improve the understanding of them and provide new ideas for the treatment of related diseases.
Signal Transduction/physiology*
;
Mitochondria
;
Receptors, Notch/metabolism*
;
Cell Differentiation/physiology*
;
Energy Metabolism
8.Research progress on the regulation of mammalian energy metabolism by the circadian clock system and gut microbiota.
Hai-Sen ZHANG ; Chao LI ; Ya-Ting LI ; Ya-Ping JIN ; Wei LIU ; Hua-Tao CHEN
Acta Physiologica Sinica 2022;74(3):443-460
The mammalian internal circadian clock system has been evolved to adapt to the diurnal changes in the internal and external environment of the organism to regulate diverse physiological functions, such as the sleep-wake cycle and feeding rhythm, thereby coordinating the rhythmic changes of energy demand and nutrition supply in each diurnal cycle. The circadian clock regulates glucose metabolism, lipid metabolism, and hormones secretion in diverse tissues and organs, including the liver, skeletal muscle, pancreas, heart, and vessels. As a special "organ" of the host, the gut microbiota, together with the intestinal microenvironment (tissues, cells, and metabolites) in a co-evolutionary process, constitutes a micro-ecosystem and plays an important role in the process of nutrient digestion and absorption in the intestine of the host. In recent years, accumulating evidence indicates that the compositions, quantities, colonization, and functional activities of the gut microbiota exhibit significant circadian variations, which are closely related to the changes of various physiological functions under the regulation of host circadian clock system. In addition, several studies have shown that the gut microbiota can produce many important metabolites such as the short-chain fatty acids through the degradation of indigestive dietary fibers. A portion of gut microbiota-derived metabolites can regulate the circadian clock system and metabolism of the host. This article mainly discusses the interaction between the host circadian clock system and the gut microbiota, and highlights its influence on energy metabolism of the host, providing a novel clues and thought for the prevention and treatment of metabolic diseases.
Animals
;
Circadian Clocks/physiology*
;
Circadian Rhythm/physiology*
;
Ecosystem
;
Energy Metabolism
;
Gastrointestinal Microbiome/physiology*
;
Lipid Metabolism/physiology*
;
Mammals
9.Integrative Physiology: Defined Novel Metabolic Roles of Osteocalcin.
Yu Sik KIM ; Il Young PAIK ; Young Jun RHIE ; Sang Hoon SUH
Journal of Korean Medical Science 2010;25(7):985-991
The prevailing model of osteology is that bones constantly undergo a remodeling process, and that the differentiation and functions of osteoblasts are partially regulated by leptin through different central hypothalamic pathways. The finding that bone remodeling is regulated by leptin suggested possible endocrinal effects of bones on energy metabolism. Recently, a reciprocal relationship between bones and energy metabolism was determined whereby leptin influences osteoblast functions and, in turn, the osteoblast-derived protein osteocalcin influences energy metabolism. The metabolic effects of bones are caused by the release of osteocalcin into the circulation in an uncarboxylated form due to incomplete gamma-carboxylation. In this regard, the Esp gene encoding osteotesticular protein tyrosine phosphatase is particularly interesting because it may regulate gamma-carboxylation of osteocalcin. Novel metabolic roles of osteocalcin have been identified, including increased insulin secretion and sensitivity, increased energy expenditure, fat mass reduction, and mitochondrial proliferation and functional enhancement. To date, only a positive correlation between osteocalcin and energy metabolism in humans has been detected, leaving causal effects unresolved. Further research topics include: identification of the osteocalcin receptor; the nature of osteocalcin regulation in other pathways regulating metabolism; crosstalk between nutrition, osteocalcin, and energy metabolism; and potential applications in the treatment of metabolic diseases.
Bone Remodeling/physiology
;
Bone and Bones/*metabolism
;
*Energy Metabolism
;
Humans
;
Leptin/metabolism
;
Osteocalcin/genetics/*metabolism
10.Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.
Ralf R HENKEL ; Kerstin DEFOSSE ; Hans-Wilhelm KOYRO ; Norbert WEISSMANN ; Wolf-Bernhard SCHILL
Asian Journal of Andrology 2003;5(1):3-8
AIMTo investigate the human sperm oxygen/energy consumption and zinc content in relation to motility.
METHODSIn washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility.
RESULTSThe oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed.
CONCLUSIONPoorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.
Adult ; Energy Metabolism ; physiology ; Flagella ; physiology ; Humans ; Male ; Middle Aged ; Oxygen Consumption ; Sperm Motility ; physiology ; Spermatozoa ; metabolism ; Zinc ; metabolism