1.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
2.FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway.
Yan-Jun ZHANG ; Fei-Fei XIAO ; Xiao-Hua LI ; Shen-Hua TANG ; Yi SANG ; Chao-Yue LIU ; Jian-Chang LI
Chinese Journal of Contemporary Pediatrics 2025;27(5):601-608
OBJECTIVES:
To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG).
METHODS:
Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene.
RESULTS:
Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05).
CONCLUSIONS
FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.
Humans
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Fibroblast Growth Factors/pharmacology*
;
Heme Oxygenase-1/physiology*
;
Apoptosis/drug effects*
;
Glucose
;
Inflammation
;
Interleukin-6/analysis*
;
Vascular Endothelial Growth Factor A/genetics*
;
Nitric Oxide Synthase Type II/analysis*
;
Cells, Cultured
3.Mechanism of Bone-metastatic LUAD Cells Promoting Angiogenesis Through HGF/YAP Signaling Pathway.
Yan DENG ; Rong QIU ; Xingyu LIU ; Yingyang SU ; Yang XUE ; Yuzhen DU
Chinese Journal of Lung Cancer 2024;27(11):805-814
BACKGROUND:
The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.
METHODS:
The culture media from bone-metastatic LUAD cell A549-GFP-LUC-BM3 (BM3-CM) and A549-GFP-LUC (A549-CM) were separately applied to human umbilical vein endothelial cell (HUVEC). A colony formation assay, scratch assay, and tube formation assay were conducted to evaluate the proliferation, migration, and angiogenesis of HUVEC. Gene set enrichment analysis (GSEA) was conducted to identify enriched pathways, while reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme linked immunosorbent assay (ELISA) were performed to quantify hepatocyte growth factor (HGF), a protein that plays a crucial role in angiogenesis. Furthermore, the pivotal function of HGF and its underlying molecular mechanisms have been substantiated through the utilisation of recombinant proteins, neutralising antibodies, pathway inhibitors, immunofluorescence staining, and Western blot.
RESULTS:
BM3-CM demonstrated a more pronounced impact on the proliferation, migration, and angiogenesis of HUVEC compared to A549-CM. Bioinformatics analysis, combined with in vitro experiment, demonstrated that the secretory protein HGF was significantly elevated in BM3 cells and BM3-CM (P<0.05). The addition of HGF neutralizing antibodies to BM3-CM inhibited the promoting effect of BM3-CM on HUVEC (P<0.05), while the addition of recombinant HGF to A549-CM reproduced that promoting effect of BM3-CM on HUVEC (P<0.05). HGF can enhance the activation of YAP (Yes-associated protein) in HUVEC, and this promotion effect may be achieved by activating Src and activating YAP into the nucleus (P<0.05), but this effect can be inhibited by HGF neutralizing antibodies (P<0.05). Furthermore, the addition of recombinant HGF to A549-CM can recapitulate the YAP activation effect of BM3-CM in HUVEC (P<0.05).
CONCLUSIONS
Bone microenvironment reprogrammed bone-metastatic LUAD cells BM3 promote the proliferation, migration, and angiogenesis of HUVEC through the HGF/YAP axis, potentially playing a significant role in the modifications of the vascular niche.
Humans
;
Hepatocyte Growth Factor/genetics*
;
Signal Transduction
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells
;
Bone Neoplasms/blood supply*
;
Adenocarcinoma of Lung/genetics*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Lung Neoplasms/genetics*
;
Cell Movement
;
Cell Proliferation
;
YAP-Signaling Proteins
;
Transcription Factors/genetics*
;
Cell Line, Tumor
;
Tumor Microenvironment
;
Angiogenesis
4.Association of polymorphisms of VEGF and VEGFR1 pathways related genes and risk of pre-eclampsia.
Li LI ; Xiangcui GUO ; Beibei CHEN ; Zhihui GAO ; Juan LIU ; Qiangqing WANG
Chinese Journal of Medical Genetics 2022;39(8):893-897
OBJECTIVE:
To assess the association of single nucleotide polymorphisms (SNPs) of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 1 (VEGFR1) pathways-related genes and the risk of pre-eclampsia.
METHODS:
In total 178 pregnant women with pre-eclampsia (case group) and 100 healthy pregnant women (control group) during the third trimester were enrolled. The SNPs of VEGF rs3025039, rs2010963 and VEGFR1 rs3812867, rs55875014 and rs722503 loci were determined by PCR-restriction fragment length polymorphism (PCR-RFLP) assay. The levels of serum VEGF and sVEGFR1 were also determined. And their association with pre-eclampsia was analyzed.
RESULTS:
The systolic blood pressure, diastolic blood pressure and sVEGFR1 of the case group were significantly higher than those of the control group, while the VEGF level was significantly lower than that in the control group (P<0.05). Allelic frequencies of the VEGF (rs3025039, rs2010963) and VEGFR1 (rs3812867, rs55875014, rs722503) have fit the Hardy-Weinberg equilibrium (P>0.05). The frequency of T allele of VEGF at rs3025039 locus in the case group was higher than that in the control group (P<0.05). There were significant differences in VEGF at rs3025039 locus under dominant and co-dominant models in case group (P<0.05). Compared with those with CC, the risk was higher in patients with CT or TT genotypes (P<0.05). The systolic and diastolic blood pressure and sVEGFR1 in pre-eclampsia pregnant women with CT or TT genotypes were significantly higher than those with the CC genotype, while their VEGF level was significantly lower (P<0.05). No significant difference was found in allelic frequencies of other four loci between the two groups (P>0.05).
CONCLUSION
Polymorphisms of rs3025039 locus of VEGF gene is associated with the occurrence of pre-eclampsia. The variant at this locus may affect the activity of VEGF and influence the development of pre-eclampsia.
Case-Control Studies
;
Female
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Polymorphism, Single Nucleotide
;
Pre-Eclampsia/genetics*
;
Pregnancy
;
Vascular Endothelial Growth Factor A/genetics*
;
Vascular Endothelial Growth Factor Receptor-1/genetics*
;
Vascular Endothelial Growth Factors/genetics*
5.Effect of hypoxia on HIF -1 α/MDR1/VEGF expression in gastric cancer cells treated with 5 -fluorouracil.
Lu WANG ; Wei XING ; Jin QI ; Yongyan LU ; Linbiao XIANG ; Yali ZHOU
Journal of Central South University(Medical Sciences) 2022;47(12):1629-1636
OBJECTIVES:
Fluorouracil chemotherapeutic drugs are the classic treatment drugs of gastric cancer. But the problem of drug resistance severely limits their clinical application. This study aims to investigate whether hypoxia microenvironment affects gastric cancer resistance to 5-fluorouracil (5-FU) and discuss the changes of gene and proteins directly related to drug resistance under hypoxia condition.
METHODS:
Gastric cancer cells were treated with 5-FU in hypoxia/normoxic environment, and were divided into a Normoxic+5-FU group and a Hypoxia+5-FU group. The apoptosis assay was conducted by flow cytometry Annexin V/PI double staining. The real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to detect the expression level of hypoxia inducible factor-1α (HIF-1α), multidrug resistance (MDR1) gene, P-glycoprotein (P-gp), and vascular endothelial growth factor (VEGF) which were related to 5-FU drug-resistance. We analyzed the effect of hypoxia on the treatment of gastric cancer with 5-FU.
RESULTS:
Compared with the Normoxic+5-FU group, the apoptosis of gastric cancer cells treated with 5-FU in the Hypoxia+5-FU group was significantly reduced (P<0.05), and the expression of apoptosis promoter protein caspase 8 was also decreased. Compared with the the Normoxic+5-FU group, HIF-1α mRNA expression in the Hypoxia+5-FU group was significantly increased (P<0.05), and the mRNA and protein expression levels of MDR1, P-gp and VEGF were also significantly increased (all P<0.05). The increased expression of MDR1, P-gp and VEGF had the same trend with the expression of HIF-1α.
CONCLUSIONS
Hypoxia is a direct influencing factor in gastric cancer resistance to 5-FU chemotherapy. Improvement of the local hypoxia microenvironment of gastric cancer may be a new idea for overcoming the resistance to 5-FU in gastric cancer.
Humans
;
Fluorouracil/therapeutic use*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Stomach Neoplasms/drug therapy*
;
Drug Resistance, Multiple
;
Vascular Endothelial Growth Factors/metabolism*
;
Hypoxia
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics*
;
Cell Line, Tumor
;
Cell Hypoxia
;
RNA, Messenger/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Tumor Microenvironment
6.Production of high-purity recombinant human vascular endothelial growth factor (rhVEGF165) by Pichia pastoris.
Weijie ZHOU ; Fengmei WU ; Dongsheng YAO ; Chunfang XIE
Chinese Journal of Biotechnology 2021;37(11):4083-4094
Vascular endothelial growth factor (VEGF165) is a highly specific vascular endothelial growth factor that can be used to treat many cardiovascular diseases. The development of anti-tumor drugs and disease detection reagents requires highly pure VEGF165 (at least 95% purity). To date, the methods for heterologous expression and purification of VEGF165 require multiple purification steps, but the product purity remains to be low. In this study, we optimized the codons of the human VEGF165 gene (vegf165) according to the yeast codon preference. Based on the Pichia pastoris BBPB vector, we used the Biobrick method to construct a five-copy rhVEGF165 recombinant expression vector using Pgap as the promoter. In addition, a histidine tag was added to the vector. Facilitated by the His tag and the heparin-binding domain of VEGF165, we were able to obtain highly pure rhVEGF165 (purity > 98%) protein using two-step affinity chromatography. The purified rhVEGF165 was biologically active, and reached a concentration of 0.45 mg/mL. The new design of the expression vector enables production of active and highly pure rhVEGF165 ) in a simplified purification process, the purity of the biologically active natural VEGF165 reached the highest reported to date.
Codon/genetics*
;
Humans
;
Pichia/genetics*
;
Recombinant Proteins/genetics*
;
Saccharomycetales
;
Vascular Endothelial Growth Factor A/genetics*
;
Vascular Endothelial Growth Factors
7.1-Methoxycarbony-β-carboline from Picrasma quassioides exerts anti-angiogenic properties in HUVECs in vitro and zebrafish embryos in vivo.
Qing-Hua LIN ; Wei QU ; Jian XU ; Feng FENG ; Ming-Fang HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):599-609
Angiogenesis is a crucial process in the development of inflammatory diseases, including cancer, psoriasis and rheumatoid arthritis. Recently, several alkaloids from Picrasma quassioides had been screened for angiogenic activity in the zebrafish model, and the results indicated that 1-methoxycarbony-β-carboline (MCC) could effectively inhibit blood vessel formation. In this study, we further confirmed that MCC can inhibit, in a concentration-dependent manner, the viability, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as the regenerative vascular outgrowth of zebrafish caudal fin in vivo. In the zebrafish xenograft assay, MCC inhibited the growth of tumor masses and the metastatic transplanted DU145 tumor cells. The proteome profile array of the MCC-treated HUVECs showed that MCC could down-regulate several angiogenesis-related self-secreted proteins, including ANG, EGF, bFGF, GRO, IGF-1, PLG and MMP-1. In addition, the expression of two key membrane receptor proteins in angiogenesis, TIE-2 and uPAR, were also down-regulated after MCC treatment. Taken together, these results shed light on the potential therapeutic application of MCC as a potent natural angiogenesis inhibitor via multiple molecular targets.
Angiogenesis Inhibitors
;
chemistry
;
pharmacology
;
Animals
;
Carbolines
;
chemistry
;
pharmacology
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Epidermal Growth Factor
;
genetics
;
metabolism
;
Fibroblast Growth Factors
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
drug effects
;
Picrasma
;
chemistry
;
Plant Extracts
;
chemistry
;
pharmacology
;
Receptor, TIE-2
;
genetics
;
metabolism
;
Zebrafish
;
embryology
8.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
9.Epidermal growth factor-like domain 7 promotes endothelial cell migration and angiogenesis by activating ERK signaling pathway.
Chinese Journal of Pathology 2015;44(4):270-273
OBJECTIVETo explore the effect of epidermal growth factor-like domain 7(EGFL7) on the migration and angiogenesis of endothelial cells.
METHODSEGFL7 overexpression vectors were constructed and transfected into human microvascular endothelial cells. The expression levels of EGFL7-mRNA and EGFL7 protein were examined by real-time RT-PCR and Western blot. Cell migration was analyzed by the wound healing. The capability of cell to form capillary-like tubes in vitro was evaluated on matrigel assay. Protein expression of p-AKT, AKT, p-ERK and ERK in endothelial cells was detected by Western blot upon transfection with EGFL7 overexpression vectors and vehicle control for 0, 10, 30 and 60 min.
RESULTSMigration and angiogenesis of endothelial cells were notably enhanced by EGFL7 overexpression. ERK pathway was strongly activated by EGFL7, whereas AKT remained constant in endothelial cells. Inhibition of ERK impaired EGFL7 induced ERK activation and endothelial cell migration and angiogenesis.
CONCLUSIONEGFL7 effectively promotes migration and angiogenesis through ERK signaling pathway in endothelial cells.
Blotting, Western ; Cell Movement ; Endothelial Cells ; physiology ; Endothelial Growth Factors ; genetics ; physiology ; Humans ; MAP Kinase Signaling System ; physiology ; Neovascularization, Physiologic ; RNA, Messenger ; metabolism ; Signal Transduction
10.Genetics and Biomarkers of Moyamoya Disease: Significance of RNF213 as a Susceptibility Gene.
Miki FUJIMURA ; Shinya SONOBE ; Yasuo NISHIJIMA ; Kuniyasu NIIZUMA ; Hiroyuki SAKATA ; Shigeo KURE ; Teiji TOMINAGA
Journal of Stroke 2014;16(2):65-72
Moyamoya disease is characterized by a progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Although its etiology is still unknown, recent genome-wide and locus-specific association studies identified RNF213 as an important susceptibility gene of moyamoya disease among East Asian population. A polymorphism in c.14576G>A in RNF213 was identified in 95% of familial patients with moyamoya disease and 79% of sporadic cases, and patients having this polymorphism were found to have significantly earlier disease onset and a more severe form of moyamoya disease, such as the presentation of cerebral infarction and posterior cerebral artery stenosis. The exact mechanism by which the RNF213 abnormality relates to moyamoya disease remains unknown, while recent reports using genetically engineered mice lacking RNF213 by homologous recombination provide new insight for the pathogenesis of this rare entity. Regarding biomarkers of moyamoya disease, moyamoya disease is characterized by an increased expression of angiogenic factors and pro-inflammatory molecules such as vascular endothelial growth factors and matrix metalloproteinase-9, which may partly explain its clinical manifestations of the pathologic angiogenesis, spontaneous hemorrhage, and higher incidence of cerebral hyperperfusion after revascularization surgery. More recently, blockade of these pro-inflammatory molecules during perioperative period is attempted to reduce the potential risk of surgical complication including cerebral hyperperfusion syndrome. In this review article, we focus on the genetics and biomarkers of moyamoya disease, and sought to discuss their clinical implication.
Angiogenesis Inducing Agents
;
Animals
;
Asian Continental Ancestry Group
;
Biomarkers*
;
Brain
;
Carotid Artery, Internal
;
Cerebral Infarction
;
Constriction, Pathologic
;
Genetics*
;
Hemorrhage
;
Homologous Recombination
;
Humans
;
Incidence
;
Matrix Metalloproteinase 9
;
Mice
;
Moyamoya Disease*
;
Neovascularization, Pathologic
;
Perioperative Period
;
Posterior Cerebral Artery
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors

Result Analysis
Print
Save
E-mail