1.In vitro effect of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide on differentiation from human adipose-derived mesenchymal stem cells to endothelial cells.
Yu-jia ZHAI ; Jia CHEN ; Hong-gang ZHANG ; Jing ZHANG ; Qiu-Ju ZHANG ; Rui-juan XIU
Acta Academiae Medicinae Sinicae 2011;33(3):306-312
OBJECTIVETo explore the effect of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide(W7) on the differentiation from human adipose-derived mesenchymal stem cells (hADSCs) to endothelial cells.
METHODShADSCs were cultured with serum-free differential medium containing 40 ng/ml vascular endothelial growth factor (VEGF) and 10ng/ml basic fibroblast growth factor (bFGF). Cells were divided into control group (differential medium without W7), high-dose group (containing 30 μmol/L W7), medium-dose group (containing 20 μmol/L W7), and low-dose group ( containing 10 μmol/L W7). The hADSCs were cultured for 8 days, and then the changes in the phenotypes of von Willebrand factor (vWF) and vessel-selective cadherin (VE-Cadherin) were detected by flow cytometry (FCM). The intracellular Ca(2+) labeled with Fluo-3 was detected by laser confocal microscopy. After hADSCs planting on Matrigel, their angiogenic potentials were observed under the inverted phase contrast microscope, and the expression of extracellular regulated kinase (ERK) and phosphorylated extracellular regulated kinase (p-ERK) were evaluated by Western blot.
RESULTSAfter the hADSCs were cultured for 8 days, compared with the control group, the expressions of vWF and VE-Cadherin significantly increased along with the decrease of W7 level and the intracellular Ca(2+) also significantly increased (Pü0.01). Lumina-like vascular structure was formed in W7 treatment groups, but not in the blank control group. Compared with the blank control group, the expression of ERK showed no significant in W7 treatment groups (high-, medium-, and low-dose groups)(P>0.05); however, along with the decrease of W7 levels, the expression of p-ERK significantly increased(P<0.05).
CONCLUSIONW7 in proper levels can effectively induce the differentiation from hADSCs to endothelium by increasing the intracellular Ca(2+) level and thus activating the ERK/MAPK pathway.
Adipose Tissue ; cytology ; Cell Differentiation ; drug effects ; Cells, Cultured ; Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Mesenchymal Stromal Cells ; cytology ; drug effects ; metabolism ; Sulfonamides ; pharmacology
4.Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells.
Xiao-Bin WANG ; Li ZHU ; Jun HUANG ; Yi-Gang YIN ; Xiang-Qing KONG ; Qi-Fei RONG ; Ai-Wu SHI ; Ke-Jiang CAO
Chinese Medical Journal 2011;124(24):4310-4315
BACKGROUNDPrevious studies have shown that resveratrol increases endothelial progenitor cell (EPC) numbers and functional activity. Increased EPC numbers and activity are associated with the inhibition of EPC senescence. In this study, we investigated the effect of resveratrol on the senescence of EPCs, leading to potentiation of cellular function.
METHODSEPCs were isolated from human peripheral blood and identified immunocytochemically. EPCs were incubated with resveratrol (1, 10, and 50 µmol/L) or control for specified times. After in vitro cultivation, acidic β-galactosidase staining revealed the extent of senescence in the cells. To gain further insight into the underlying mechanism of the effect of resveratrol, we measured telomerase activity using a polymerase chain reaction (PCR)-enzyme-linked immunosorbent assay (ELISA) technique. Furthermore, we measured the expression of human telomerase reverse transcriptase (hTERT) and the phosphorylation of Akt by immunoblotting.
RESULTSResveratrol dose-dependently inhibited the onset of EPC senescence in culture. Resveratrol also significantly increased telomerase activity. Interestingly, quantitative real-time PCR analysis demonstrated that resveratrol dose-dependently increased the expression of the catalytic subunit, hTERT, an effect that was significantly inhibited by pharmacological phosphatidylinositol 3-kinase (PI3-K) blockers (wortmannin). The expression of hTERT is regulated by the PI3-K/Akt pathway; therefore, we examined the effect of resveratrol on Akt activity in EPCs. Immunoblotting analysis revealed that resveratrol led to dose-dependent phosphorylation and activation of Akt in EPCs.
CONCLUSIONResveratrol delayed EPCs senescence in vitro, which may be dependent on telomerase activation.
Cells, Cultured ; Cellular Senescence ; drug effects ; Endothelial Cells ; cytology ; drug effects ; enzymology ; Humans ; Stem Cells ; cytology ; drug effects ; enzymology ; Stilbenes ; toxicity ; Telomerase ; metabolism
5.Effects of insulin on the growth factor secreting function of adipose-derived stem cells.
Tao SHE ; Da-hai HU ; Jun ZHANG ; Jia-qi LIU ; Wan-fu ZHANG ; Wei-xia CAI ; Zhou-ting ZHAO ; Chao-wu TANG
Chinese Journal of Burns 2009;25(4):268-271
OBJECTIVETo study the effect of insulin in different concentrations on secretion function of growth factors of adipose-derived stem cells (ADSCs).
METHODSADSCs were isolated from human abdominal adipose tissue and cultured. The immunophenotype and adipose induced-differentiation were identified, and the third generation cells were collected. The collected cells were assigned to 1 x 10(-8), 1 x 10(-7), 1 x 10(-6) mol/L insulin groups according to the concentration of added insulin. When cells grew into 70% confluence in conventional medium, ADSCs were cultured further in serum-free DMEM containing insulin in different concentrations for 3 days. ADSCs cultured in medium without insulin were used as control group. Secretion amount of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) of ADSCs were determined by enzyme-linked immunosorbent assay. The effects of the supernatant fluid of ADSCs' nutrient solution on the proliferation and collagen synthesis of the cultured fibroblast were detected by MTT chromatometry and hydroxyproline chromatometry.
RESULTSThe secretion amounts of VEGF and HGF of ADSCs in 1 x 10(-8) and 1 x 10(-7) mol/L insulin groups [(471 +/- 41, 762 +/- 66 ng/L), (643 +/- 64, 930 +/- 67 ng/L), respectively] were significantly higher as compared with those in control group (286 +/- 47, 577 +/- 84 ng/L) (P < 0.05 or P < 0.01). No change occurred in the secretion amount of VEGF and HGF of ADSCs in 1 x l0(-6) mol/L insulin group (P > 0.05). The supernatant fluid of ADSCs' nutrient medium of 1 x 10(-8), 1 x 10(-7) mol/L insulin groups showed obvious stimulative effect on the proliferation and collagen synthesis of fibroblasts, and it was most obvious in the 1 x 10(-7) mol/L group (P < 0.05 or P < 0.01).
CONCLUSIONSInsulin in the concentrations of 1 x 10(-8) and 1 x 10(-7) mol/L can notably promote ADSCs' function of secreting VEGF and HGF.
Adipocytes ; cytology ; drug effects ; secretion ; Cells, Cultured ; Fibroblasts ; cytology ; Hepatocyte Growth Factor ; metabolism ; Humans ; Insulin ; pharmacology ; Stem Cells ; cytology ; drug effects ; secretion ; Vascular Endothelial Growth Factor A ; metabolism
6.The role of ouabain in cell death of vascular endothelial cells ECV304 and the changes of expression of Na+, K(+)-ATPase alpha1, beta1-subunit.
Na WANG ; Rui-Cheng XU ; Xiao-Yi CHEN ; Wen-Liang HU
Chinese Journal of Applied Physiology 2008;24(2):177-183
AIMTo study the effect of Na+, K(+)-ATPase inhibition by ouabain on growth and death of vascular endothelial cells ECV304 and involved mechanisms.
METHODSGrowth inhibition of ouabain on ECV304 cells was analyzed using MTT assay. The feature of cell death was studied by Hoechst 33342/PI staining, transmission electron microscopy and DNA agarose gel electrophoresis in ECV304 cells treated with ouabain. The mRNA expression of Na+, K(+)-ATPase alpha1, beta1-subunit was examined by reverse transcription PCR (RT-PCR).
RESULTSOuabain inhibited the growth of ECV304 cells in a dose and time-dependent manner. 10 micromol/L ouabain treated for 24 hours could stimulate the necrosis of ECV304 cells; When treated with 0.1 micromol/L ouabain for 24-48 hours, the cells showed obviously defluxion, the loss of cell-cell contacts, nuclear chromatin condensation, chromatin margination and DNA fragmentation. Na+, K(+)-ATPase alpha1-subunit mRNA expression was significantly up-regulated in ECV304 cells treated with ouabain while the beta1-subunit expression conversely showed a significant decrease.
CONCLUSIONOuabain could up-regulate Na+, K(+)-ATPase alpha1-Subunit expression and reduce beta1-Subunit expression which mediated signal transduction and decreased cell-cell adhesions and induced ECV304 cells death.
Cell Death ; drug effects ; Cell Line ; Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Ouabain ; pharmacology ; Sodium-Potassium-Exchanging ATPase ; metabolism
7.Alterations of Thymic Epithelial Cells in Lipopolysaccharide-induced Neonatal Thymus Involution.
Yong-Jie ZHOU ; Hua PENG ; Yan CHEN ; Ya-Lan LIU
Chinese Medical Journal 2016;129(1):59-65
BACKGROUNDVascular endothelial growth factor (VEGF) in the thymus was mainly produced by the thymic epithelial cells (TECs), the predominant component of the thymic microenvironment. The progression of TECs and the roles of VEGF in the neonatal thymus during sepsis have not been reported. This study aimed to explore the alterations of TECs and VEGF level in the neonatal thymus involution and to explore the possible mechanisms at the cellular level.
METHODSBy establishing a model of clinical sepsis, the changes of TECs were measured by hematoxylin-eosin staining, confocal microscopy, and flow cytometry. Moreover, the levels of VEGF in serum and thymus were assessed based on enzyme-linked immunosorbent assay and Western blotting.
RESULTSThe number of thymocytes and TECs was significantly decreased 24 h after lipopolysaccharide (LPS) challenge, (2.40 ± 0.46)×10 7 vs. (3.93 ± 0.66)×10 7 and (1.16 ± 0.14)×10 5 vs. (2.20 ± 0.19)×10 5 , P < 0.05, respectively. Cortical TECs and medullary TECs in the LPS-treated mice were decreased 1.5-fold and 3.9-fold, P < 0.05, respectively, lower than those in the controls. The number of thymic epithelial progenitors was also decreased. VEGF expression in TECs was down-regulated in a time-dependent manner.
CONCLUSIONVEGF in thymic cells subsets might contribute to the development of TECs in neonatal sepsis.
Animals ; Animals, Newborn ; Cells, Cultured ; Epithelial Cells ; cytology ; drug effects ; metabolism ; Lipopolysaccharides ; toxicity ; Mice ; Thymus Gland ; cytology ; drug effects ; metabolism ; Vascular Endothelial Growth Factor A ; metabolism
8.Negative regulation of cells proliferation by Gax gene and its mechanisms.
Shijin XIA ; Xiantao TAI ; Guisheng QIAN
Journal of Biomedical Engineering 2009;26(1):206-210
Gax gene is a newly found negative transcriptional regulator of cells proliferation. This paper introduces the detection and structural features of Gax, details the inhibitory effect of Gax on the proliferation of vascular smooth muscle cells, vascular endothelial cells and cancer cells, and explains the putative mechanisms therein involved. The potential for providing therapeutic insights into human diseases by modulating Gax activity is prospected.
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Endothelial Cells
;
cytology
;
Gene Expression
;
Homeodomain Proteins
;
genetics
;
metabolism
;
Humans
;
Muscle, Smooth, Vascular
;
cytology
9.Effect of angelicanaphtha on proliferation, apoptosis, collagen synthesis of human umbilical vein endothelial cells.
Kai LIU ; Xuan-Fen ZHANG ; Jin ZHANG ; Ming-Hua CAO ; Lin ZHONG ; Yong FAN
Chinese Journal of Plastic Surgery 2007;23(3):248-250
OBJECTIVETo investigate the effects of angelicanaphtha on proliferation, cell cycle, apoptosis, and collagen synthesis of human umbilical vein endothelial cells (HUVEC).
METHODSHUVEC was cultured and passaged in Dulbecco's modified Eagle's medium (DMEM) and treated with angelicanaphtha 1 mg/ L, 4 mg/L, and 16 mg/L at 1, 3, 5, and 7 day respectively. The proliferation was measured with MTT method. The cell cycle and apoptosis were analyzed with flow cytometry and collagen synthesis was determined with radioimmunoassay.
RESULTSThe proliferation of the HUVEC was accelerated by angelicanaphtha < or =4 mg/L and inhibited by angelicanaphtha at 16 mg/L (P < 0.05). Lower concentration (< or = 4 mg/L) of Angelicanaphtha decreased cells in G0/G1 phase and increased significantly cells in S phase and inhibited the apoptosis (P < 0.05). However, angelicanaphtha at 16 mg/L increased cells in G0/G1 phase and decreased cells in S phase and induced the apoptosis (P < 0.05). The collagen synthesis of HUVEC was inhibited by angelicanaphtha in concentration-dependent manner (P < 0.05 or 0.01).
CONCLUSIONThe proliferation effects of angelicanaphtha on HUVEC had dualistic regulation of increase by lower-concentration and inhibition by higher-concentration. Collagen synthesis of HUVEC was inhibited by angelicanaphtha in concentration-dependent manner.
Angelica sinensis ; Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Collagen Type III ; biosynthesis ; Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Oils, Volatile ; pharmacology ; Umbilical Veins ; cytology
10.Roles of Chinese medicine bioactive ingredients in the regulation of cellular function of endothelial progenitor cells.
Qi-Tao ZHAO ; Bao-Feng LI ; Hui KONG
Chinese Journal of Natural Medicines (English Ed.) 2014;12(7):481-487
To improve the function of endothelial progenitor cells (EPCs) is one of the goals in Chinese traditional therapy to treat various cardio-celebrovascular diseases. In the past decades, scholars in the field of traditional Chinese medicine (TCM) have found fifteen active compounds to regulate the function of EPC. These metabolites are extracted from thirteen, plant-based Chinese medicine, with majority of them as potent reductive or oxidative hydrophilic molecules containing phenyl groups. These active compounds either enhance the mobilization of EPC, or inhibit their apoptosis through different signaling pathways. In this review, the molecular structure, biophysical properties, and the plant sources of these active ingredients and their regulatory effects on the function of EPC are summarized, aiming to reveal the modern basis of Chinese medicine for promoting blood circulation and removing blood stasis at the progenitor cell level.
Animals
;
Apoptosis
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
Endothelial Progenitor Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Signal Transduction
;
drug effects