1.Spatio-temporal expression of dentin sialophosphoprotein and collagen Ⅰ during molar tooth germ development in vps4b knockout mouse.
Dong CHEN ; Ying-Ying WANG ; Xiao-Cong LI ; Fang-Li LU ; Qiang LI
West China Journal of Stomatology 2019;37(3):248-252
OBJECTIVE:
To verify the effect of the mutant gene vps4b on the expression of tooth development-related proteins, dentin sialophosphoprotein (DSPP) and collagenⅠ (COL-Ⅰ).
METHODS:
Paraffin tissue sections of the first molar tooth germ were obtained from the heads of fetal mice at the embryonic stages of 13.5, 14.5, and 16.5 days and from the mandibles of larvae aged 2.5 and 7 days after birth. The immunohistochemical method was used to detect the expression and location of DSPP and COL-Ⅰ in wild-type mouse and vps4b knockout mouse.
RESULTS:
DSPP and COL-Ⅰ were not found in the bud and cap stages of wild-type mouse molar germ. In the bell stage, DSPP was positively expressed in the inner enamel epithelium and dental papilla, whereas COL-Ⅰ was strongly expressed in the dental papilla and dental follicle. During the secretory and mineralized periods, DSPP and COL-Ⅰ were intensely observed in ameloblasts, odontoblasts, and dental follicles, but COL-Ⅰ was also expressed in the dental papilla. After vps4b gene knockout, DSPP was not expressed in the dental papilla of the bell stage and in the dental papilla and dental follicle of the secretory phase. The expression position of COL-Ⅰ in the bell and mineralization phase was consistent with that in the wild-type mice. Moreover, the expression of COL-Ⅰ in the dental papilla changed in the secretory stage.
CONCLUSIONS
Gene vps4b plays a significant role in the development of tooth germ. The expression of DSPP and COL-Ⅰ may be controlled by gene vps4b and regulates the development of tooth dentin and cementum together with vps4b.
ATPases Associated with Diverse Cellular Activities
;
genetics
;
Animals
;
Collagen
;
metabolism
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
Extracellular Matrix Proteins
;
metabolism
;
Mice
;
Mice, Knockout
;
Molar
;
Odontoblasts
;
Phosphoproteins
;
metabolism
;
Sialoglycoproteins
;
metabolism
;
Tooth Germ
2.Application of methylation-specific multiplex ligation-dependent probe amplification for the study of DNA methylation in placenta tissues.
Yuzhu YIN ; Jun ZHANG ; Qin SHE ; Qi TIAN ; Junwei LIN
Chinese Journal of Medical Genetics 2014;31(5):582-586
OBJECTIVETo study the feasibility of using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) for the detection of DNA methylation in placenta tissue.
METHODSFor blood cells from 13 non-pregnant women and 9 euploid placenta, the ratios of DNA methylation were evaluated for 4 genes including CGI149, CGI113, HLCS and ACTB with MS-MLPA and bisulfite sequencing, respectively.
RESULTSThe methylation ratio of the ACTB gene was 0-0.1 for the blood cells when the digestion control was completely digested. The cutoff value for the methylation ratio of MS-MLPA has been determined as 0.1. For the 9 placenta samples, results of MS-MLPA and bisulfite sequencing were concordant for all of the four genes.
CONCLUSIONMS-MLPA is an effective alternative to bisulfite sequencing for the assessment of methylation ratios in placental tissues.
Actins ; genetics ; Adult ; Carbon-Nitrogen Ligases ; genetics ; CpG Islands ; genetics ; DNA Methylation ; Endosomal Sorting Complexes Required for Transport ; genetics ; Feasibility Studies ; Female ; Humans ; Multiplex Polymerase Chain Reaction ; methods ; Placenta ; metabolism ; Pregnancy ; Reproducibility of Results ; Ribosomal Proteins ; genetics ; Young Adult
3.Inhibition of HBV replication by VPS4B and its dominant negative mutant VPS4B-K180Q in vivo.
Jianbo XIA ; Weipeng WANG ; Lei LI ; Zhi LIU ; Min LIU ; Dongliang YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(3):311-316
This study examined the anti-hepatitis B virus (HBV) effect of wild-type (WT) vacuolar protein sorting 4B (VPS4B) and its dominant negative (DN) mutant VPS4B-K180Q in vivo in order to further explore the relationship between HBV and the host cellular factor VPS4. VPS4B gene was amplified from Huh7 cells by RT-PCR and cloned into the eukaryotic expression vector pXF3H. Then, the VPS4B plasmid and the VPS4B-K180Q mutation plasmid were constructed by using the overlap extension PCR site-directed mutagenesis technique. VPS4B and HBV vectors were co-delivered into mice by the hydrodynamic tail-vein injection to establish HBV vector-based models. Quantities of HBsAg and HBeAg in the mouse sera were determined by ElectroChemiLuminescence (ECL). HBV DNA in sera was measured by real-time quantitative PCR. Southern blot analysis was used to assay the intracellular HBV nuclear capsid-related DNA, real-time quantitative PCR to detect the HBV-related mRNA and immunohistochemical staining to observe the HBcAg expression in the mouse liver tissues. Our results showed that VPS4B and its mutant VPS4B-K180Q could decrease the levels of serum HBsAg, HBeAg and HBV-DNA. In addition, the HBV DNA replication and the mRNA level of HBV in the liver tissues of treated mice could be suppressed by VPS4B and VPS4B-K180Q. It was also found that VPS4B and VPS4B-K180Q had an ability to inhibit core antigen expression in the infected mouse liver. Furthermore, the anti-HBV effect of mutant VPS4B-K180Q was more potent than that of wild-type VPS4B. Taken together, it was concluded that VPS4B and its DN mutant VPS4B-K180Q have anti-HBV effect in vivo, which helps develop molecular therapeutic strategies for HBV infection.
ATPases Associated with Diverse Cellular Activities
;
Adenosine Triphosphatases
;
physiology
;
Animals
;
Endosomal Sorting Complexes Required for Transport
;
physiology
;
Female
;
Genes, Dominant
;
genetics
;
Hepatitis B
;
metabolism
;
virology
;
Hepatitis B virus
;
physiology
;
Liver
;
virology
;
Mice
;
Mice, Inbred BALB C
;
Mutation
;
genetics
;
Virus Inactivation
4.HIV-1 infection affects the expression of host cell factor TSG101 and Alix.
Hui-liang HU ; Zhe-feng MENG ; Xiao-yan ZHANG ; Jian-xin LU
Chinese Journal of Virology 2011;27(2):129-134
To investigate the effects of HIV-1 infection on the expression of host factors TSG101 (Tumor Susceptibility Gene 101) and Alix (ALG-2-interacting protein X). HIV-1 infectious clone pNL4-3 was used to infect TZM-bl, PM1, Jurkat cell lines and human peripheral blood mononuclear cells (PBMC). Twenty-four hours post-infection, the infected or uninfected cells were harvested respectively for extraction of total RNAs and total cellular proteins, which were subsequently used in RT-PCR and Western-blotting respectively to quantify TSG101 and Alix, respectively. Our data showed that HIV-1 infection resulted in various influences on the expression of TSG101 and Alix in the cell lines and the primary PBMC. A down-regulation was mainly observed in the cell lines, whereas an up-regulation of TSG101 was identified in primary PBMC. Three patterns were observed for down-regulation, including dual down-regulation of TSG101 and Alix for Jurkat cells, single down-regulation of Alix for TZM-bl cells and marginal or no influence on PM1 cells. The dual down-regulation of Alix and TSG101 in Jurkat cells coincided with less expression of HIV-1 p24 protein. This is the first-line evidence that HIV-1 infection affects the expression of host factors TSG101 and Alix, the down-regulation of these molecules may influence the HIV-1 replication. The underlying mechanism remains to be addressed.
Calcium-Binding Proteins
;
genetics
;
metabolism
;
Cell Cycle Proteins
;
genetics
;
metabolism
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
metabolism
;
Gene Expression Regulation
;
HEK293 Cells
;
HIV-1
;
physiology
;
Humans
;
Jurkat Cells
;
Leukocytes, Mononuclear
;
metabolism
;
virology
;
RNA, Messenger
;
genetics
;
metabolism
;
Transcription Factors
;
genetics
;
metabolism
5.Ubiquitylation of Fe65 adaptor protein by neuronal precursor cell expressed developmentally down regulated 4-2 (Nedd4-2) via the WW domain interaction with Fe65.
Eun Jeoung LEE ; Sunghee HYUN ; Jaesun CHUN ; Sung Hwa SHIN ; Sang Sun KANG
Experimental & Molecular Medicine 2009;41(8):555-568
Fe65 has been characterized as an adaptor protein, originally identified as an expressed sequence tag (EST) corresponding to an mRNA expressed at high levels in the rat brain. It contains one WW domain and two phosphotyrosine interaction/phosphotyrosine binding domains (PID1/PID2). As the neuronal precursor cell expressed developmentally down regulated 4-2 (Nedd4-2) has a putative WW domain binding motif (72PPLP75) in the N-terminal domain, we hypothesized that Fe65 associates with Nedd4-2 through a WW domain interaction, which has the characteristics of E3 ubiquitin-protein ligase. In this paper, we present evidence for the interaction between Fe65 WW domain and Nedd4-2 through its specific motif, using a pull down approach and co-immunoprecipitation. Additionally, the co-localization of Fe65 and Nedd4-2 were observed via confocal microscopy. Co-localization of Fe65 and Nedd4-2 was disrupted by either the mutation of Fe65 WW domain or its putative binding motif of Nedd4-2. When the ubiquitin assay was performed, the interaction of Nedd4-2 (wt) with Fe65 is required for the cell apoptosis and the ubiquitylation of Fe65. We also observed that the ubiquitylation of Fe65 (wt) was augmented depending on Nedd4-2 expression levels, whereas the Fe65 WW domain mutant (W243KP245K) or the Nedd4-2 AL mutant (72PPLP75 was changed to 72APLA75) was under-ubiquitinated significantly. Thus, our observations implicated that the protein-protein interaction between the WW domain of Fe65 and the putative binding motif of Nedd4-2 down-regulates Fe65 protein stability and subcellular localization through its ubiquitylation, to contribute cell apoptosis.
Adaptor Proteins, Signal Transducing/chemistry/genetics/*metabolism
;
Cell Line
;
*Down-Regulation
;
Endosomal Sorting Complexes Required for Transport/genetics/*metabolism
;
*Gene Expression Regulation, Developmental
;
Humans
;
Immunoprecipitation
;
Microscopy, Confocal
;
Mutation
;
Protein Interaction Mapping
;
Protein Structure, Tertiary/*physiology
;
Transfection
;
Ubiquitin-Protein Ligases/genetics/*metabolism
;
Ubiquitination
6.Upregulation of SIRT1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1.
Limin HAN ; Pan WANG ; Ganye ZHAO ; Hui WANG ; Meng WANG ; Jun CHEN ; Tanjun TONG
Protein & Cell 2013;4(4):310-321
17β-estradiol (E2) treatment of cells results in an upregulation of SIRT1 and a down-regulation of PPARγ. The decrease in PPARγ expression is mediated by increased degradation of PPARγ. Here we report that PPARγ is ubiquitinated by HECT E3 ubiquitin ligase NEDD4-1 and degraded, along with PPARγ, in response to E2 stimulation. The PPARγ interacts with ubiquitin ligase NEDD4-1 through a conserved PPXY-WW binding motif. The WW3 domain in NEDD4-1 is critical for binding to PPARΓ. NEDD4-1 overexpression leads to PPARγ ubiquitination and reduced expression of PPARγ. Conversely, knockdown of NEDD4-1 by specific siRNAs abolishes PPARΓ ubiquitination. These data indicate that NEDD4-1 is the E3 ubiquitin ligase responsible for PPARγ ubiquitination. Here, we show that NEDD4-1 delays cellular senescence by degrading PPARΓ expression. Taken together, our data show that E2 could upregulate SIRT1 expression via promoting the PPARΓ ubiquitination-proteasome degradation pathway to delay the process of cell senescence.
Amino Acid Motifs
;
Animals
;
Cellular Senescence
;
Down-Regulation
;
drug effects
;
Endosomal Sorting Complexes Required for Transport
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Estradiol
;
pharmacology
;
Female
;
HeLa Cells
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Nedd4 Ubiquitin Protein Ligases
;
PPAR gamma
;
genetics
;
metabolism
;
Proteasome Endopeptidase Complex
;
metabolism
;
Protein Structure, Tertiary
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Sirtuin 1
;
genetics
;
metabolism
;
Ubiquitin
;
metabolism
;
Ubiquitin-Protein Ligases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Ubiquitination
;
drug effects
;
Up-Regulation
;
drug effects
7.Hrs inhibits citron kinase-mediated HIV-1 budding via its FYVE domain.
Jiwei DING ; Lishan SU ; Guangxia GAO
Protein & Cell 2011;2(6):470-476
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a key component of the endosomal sorting complexes required for transport and has been demonstrated to play a regulatory role in endocytosis/exocytosis and the accumulation of internal vesicles in multivesicular bodies. Citron kinase is a Ser/The kinase that we previously reported to enhance human immunodeficiency virus type 1 (HIV-1) virion production. However, the relationship between Hrs and citron kinase in HIV-1 production remains elusive. Here, we report that Hrs interacts with citron kinase via its FYVE domain. Overexpression of Hrs or the FYVE domain resulted in a significant decrease in HIV-1 virion production. Depletion of Hrs by RNA interference in HEK293T cells increased HIV-1 virion production and enhanced the activity of citron kinase. These data suggest that Hrs inhibits HIV-1 production by inhibiting citron kinase-mediated exocytosis.
Down-Regulation
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
metabolism
;
Endosomes
;
metabolism
;
Exocytosis
;
Gene Expression
;
Gene Silencing
;
drug effects
;
HEK293 Cells
;
HIV Infections
;
genetics
;
metabolism
;
virology
;
HIV-1
;
drug effects
;
genetics
;
growth & development
;
Humans
;
Immunoprecipitation
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Microscopy, Fluorescence
;
Phosphoproteins
;
genetics
;
metabolism
;
Plasmids
;
Protein Binding
;
drug effects
;
genetics
;
Protein Interaction Domains and Motifs
;
Protein Structure, Tertiary
;
Protein Transport
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Transfection
;
Virion
;
drug effects
;
genetics
;
growth & development
;
Virus Release
;
drug effects
;
Virus Replication
;
drug effects