1.Research progress on the effect of mitochondrial and endoplasmic reticulum stress caused by hypoxia during pregnancy on preeclampsia and intrauterine growth restriction.
Hui-Fang LIU ; Ri-Li GE ; Ta-Na WUREN
Acta Physiologica Sinica 2023;75(5):714-726
Preeclampsia and intrauterine growth restriction (IUGR) of the fetus are the two most common pregnancy complications worldwide, affecting 5%-10% of pregnant women. Preeclampsia is associated with significantly increased maternal and fetal morbidity and mortality. Hypoxia-induced uteroplacental dysfunction is now recognized as a key pathological factor in preeclampsia and IUGR. Reduced oxygen supply (hypoxia) disrupts mitochondrial and endoplasmic reticulum (ER) function. Hypoxia has been shown to alter mitochondrial reactive oxygen species (ROS) homeostasis and induce ER stress. Hypoxia during pregnancy is associated with excessive production of ROS in the placenta, leading to oxidative stress. Oxidative stress occurs in a number of human diseases, including high blood pressure during pregnancy. Studies have shown that uterine placental tissue/cells in preeclampsia and IUGR show high levels of oxidative stress, which plays an important role in the pathogenesis of both the complications. This review summarizes the role of hypoxia-induced mitochondrial oxidative stress and ER stress in the pathogenesis of preeclampsia/IUGR and discusses the potential therapeutic strategies targeting oxidative stress to treat both the pregnancy complications.
Pregnancy
;
Female
;
Humans
;
Placenta
;
Fetal Growth Retardation/etiology*
;
Pre-Eclampsia/pathology*
;
Reactive Oxygen Species
;
Hypoxia/pathology*
;
Pregnancy Complications/pathology*
;
Endoplasmic Reticulum Stress
2.Advance of research on endoplasmic reticulum stress and genetic epilepsy.
Xiaohang JIANG ; Yi SUI ; Jiaqi ZHANG ; Tong YI ; Yanyan ZHAO ; Xiaoliang LIU
Chinese Journal of Medical Genetics 2023;40(6):756-761
Epilepsies are a group of chronic neurological disorders characterized by spontaneous recurrent seizures caused by abnormal synchronous firing of neurons and transient brain dysfunction. The underlying mechanisms are complex and not yet fully understood. Endoplasmic reticulum (ER) stress, as a condition of excessive accumulation of unfolded and/or misfolded proteins in the ER lumen, has been considered as a pathophysiological mechanism of epilepsy in recent years. ER stress can enhance the protein processing capacity of the ER to restore protein homeostasis through unfolded protein response, which may inhibit protein translation and promote misfolded protein degradation through the ubiquitin-proteasome system. However, persistent ER stress can also cause neuronal apoptosis and loss, which may aggravate the brain damage and epilepsy. This review has summarized the role of ER stress in the pathogenesis of genetic epilepsy.
Humans
;
Endoplasmic Reticulum Stress/genetics*
;
Unfolded Protein Response
;
Endoplasmic Reticulum/pathology*
;
Apoptosis
;
Epilepsy/genetics*
3.Clinical value of plasma scaffold protein SEC16A in evaluating hepatitis B-related liver cirrhosis and hepatocellular carcinoma.
Chen DONG ; Chu Di CHANG ; Dan Dan ZHAO ; Xiao Xiao ZHANG ; Pei Lin GUO ; Yao DOU ; Su Xian ZHAO ; Yue Min NAN
Chinese Journal of Hepatology 2023;31(6):621-626
Objective: To investigate the clinical value of plasma scaffold protein SEC16A level and related models in the diagnosis of hepatitis B virus-related liver cirrhosis (HBV-LC) and hepatocellular carcinoma (HBV-HCC). Methods: Patients with HBV-LC and HBV-HCC and a healthy control group diagnosed by clinical, laboratory examination, imaging, and liver histopathology at the Third Hospital of Hebei Medical University between June 2017 and October 2021 were selected. Plasma SEC16A level was detected using an enzyme-linked immunosorbent assay (ELISA). Serum alpha-fetoprotein (AFP) was detected using an electrochemiluminescence instrument. SPSS 26.0 and MedCalc 15.0 statistical software were used to analyze the relationship between plasma SEC16A levels and the occurrence and development of liver cirrhosis and liver cancer. A sequential logistic regression model was used to analyze relevant factors. SEC16A was established through a joint diagnostic model. Receiver operating characteristic curve was used to evaluate the clinical efficacy of the model for liver cirrhosis and hepatocellular carcinoma diagnosis. Pearson correlation analysis was used to identify the influencing factors of novel diagnostic biomarkers. Results: A total of 60 cases of healthy controls, 60 cases of HBV-LC, and 52 cases of HBV-HCC were included. The average levels of plasma SEC16A were (7.41 ± 1.66) ng/ml, (10.26 ± 1.86) ng/ml, (12.79 ± 1.49) ng /ml, respectively, with P < 0.001. The sensitivity and specificity of SEC16A in the diagnosis of liver cirrhosis and hepatocellular carcinoma were 69.44% and 71.05%, and 89.36% and 88.89%, respectively. SEC16A, age, and AFP were independent risk factors for the occurrence of HBV-LC and HCC. SAA diagnostic cut-off values, sensitivity, and specificity were 26.21 and 31.46, 77.78% and 81.58%, and 87.23% and 97.22%, respectively. The sensitivity and specificity for HBV-HCC early diagnosis were 80.95% and 97.22%, respectively. Pearson correlation analysis showed that AFP level was positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), and γ-glutamyltransferase (GGT) with P < 0.01, while the serum SEC16A level was only slightly positively correlated with ALT and AST in the liver cirrhosis group (r = 0.268 and 0.260, respectively, P < 0.05). Conclusion: Plasma SEC16A can be used as a diagnostic marker for hepatitis B-related liver cirrhosis and hepatocellular carcinoma. SEC16A, combined with age and the AFP diagnostic model with SAA, can significantly improve the rate of HBV-LC and HBV-HCC early diagnosis. Additionally, its application is helpful for the diagnosis and differential diagnosis of the progression of HBV-related diseases.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
alpha-Fetoproteins/metabolism*
;
Endoplasmic Reticulum/metabolism*
;
Golgi Apparatus/metabolism*
;
Vesicular Transport Proteins
;
Liver Cirrhosis/complications*
;
Hepatitis B/complications*
;
ROC Curve
;
Hepatitis B virus/metabolism*
;
Biomarkers, Tumor
4.Melatonin Induced Apoptosis of RPMI 8226 Cells through Endoplasmic Reticulum Stress.
Ting CHEN ; Li-Cheng LI ; Yan ZHANG ; Dan MA ; Ji-Shi WANG ; Meng-Xing LI
Journal of Experimental Hematology 2022;30(4):1156-1161
OBJECTIVE:
To investigate the effect of melatonin (MLT) on the proliferation and apoptosis of human multiple myeloma cell line RPMI 8226 and its possible mechanism.
METHODS:
RPMI 8226 cells were cultured in vitro, and different concentrations of MLT were treated on RPMI 8226 cells. The effects of MLT on RPMI 8226 cell proliferation were detected by CCK-8 assay and methylcellulose cloning assay, and the effects of MLT on cell apoptosis were detected by AnnexinV-FITC /PI, flow cytometry. Western blot was used to determine the expression of apoptosis and endoplasmic reticulum stress-related proteins in each group, and CCK-8 assay was used to determine the effect of MLT combined with bortezemib on the viability of RPMI 8226 cells.
RESULTS:
MLT inhibited the proliferation of RPMI 8226 cells in a dose- and time-dependent manner (r=-0.9777,r=-0.9951). With the increase of MLT concentration, the number of clones decreased, the apoptosis of RPMI 8226 cells increased (P<0.05), the expression of anti-apoptotic protein XIAP decreased, the expression of apoptotic proteins Bax and Caspase3 increased, and the expression of endoplasmic reticulum stress-related proteins increased. Compared with the control group, the survival of RPMI 8226 cells in the MLT and BTZ combined group significantly decreased (P<0.01).
CONCLUSION
MLT can inhibit the proliferation of RPMI 8226 cells, promote the apoptosis of RPMI 8226 cells, and enhance the anti-tumor effect of BTZ on RPMI 8226 cells. The mechanism may be related to endoplasmic reticulum stress.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Endoplasmic Reticulum Stress
;
Humans
;
Melatonin/pharmacology*
;
Multiple Myeloma/pathology*
;
Sincalide/pharmacology*
5.Xenon post-conditioning protects against spinal cord ischemia-reperfusion injury in rats by downregulating mTOR pathway and inhibiting endoplasmic reticulum stress-induced neuronal apoptosis.
Lan LUO ; Jia Qi TONG ; Lu LI ; Mu JIN
Journal of Southern Medical University 2022;42(8):1256-1262
OBJECTIVE:
The purpose of this study was to determine whether xenon post-conditioning affects mTOR signaling as well as endoplasmic reticulum stress (ERS)-apoptosis pathway in rats with spinal cord ischemia/reperfusion injury.
METHODS:
Fifty male rats were randomized equally into sham-operated group (Sham group), I/R model group (I/R group), I/R model+ xenon post-conditioning group (Xe group), I/R model+rapamycin (a mTOR signaling pathway inhibitor) treatment group (I/R+ Rapa group), and I/R model + xenon post- conditioning with rapamycin treatment group (Xe + Rapa group).. In the latter 4 groups, SCIRI was induced by clamping the abdominal aorta for 85 min followed by reperfusion for 4 h. Rapamycin (or vehicle) was administered by daily intraperitoneal injection (4 mg/kg) for 3 days before SCIRI, and xenon post-conditioning by inhalation of 1∶1 mixture of xenon and oxygen for 1 h at 1 h after initiation of reperfusion; the rats without xenon post-conditioning were given inhalation of nitrogen and oxygen (1∶ 1). After the reperfusion, motor function and histopathologic changes in the rats were examined. Western blotting and real-time PCR were used to detect the protein and mRNA expressions of GRP78, ATF6, IRE1α, PERK, mTOR, p-mTOR, Bax, Bcl-2 and caspase-3 in the spinal cord.
RESULTS:
The rats showed significantly lowered hind limb motor function following SCIRI (P < 0.01) with a decreased count of normal neurons, increased mRNA and protein expressions of GRP78, ATF6, IRE1α, PERK, and caspase-3, and elevated p-mTOR/mTOR ratio and Bax/Bcl-2 ratio (P < 0.01). Xenon post-conditioning significantly decreased the mRNA and protein levels of GRP78, ATF6, IRE1α, PERK and caspase-3 (P < 0.05 or 0.01) and reduced p-mTOR/mTOR and Bax/Bcl-2 ratios (P < 0.01) in rats with SCIRI; the mRNA contents and protein levels of GRP78 and ATF6 were significantly decreased in I/R+Rapa group (P < 0.01). Compared with those in Xe group, the rats in I/R+Rapa group and Xe+Rapa had significantly lowered BBB and Tarlov scores of the hind legs (P < 0.01), and caspase-3 protein level and Bax/Bcl-2 ratio were significantly lowered in Xe+Rapa group (P < 0.05 or 0.01).
CONCLUSION
By inhibiting ERS and neuronal apoptosis, xenon post- conditioning may have protective effects against SCIRI in rats. The mTOR signaling pathway is partially involved in this process.
Animals
;
Apoptosis
;
Caspase 3/metabolism*
;
Endoplasmic Reticulum Stress
;
Endoribonucleases/pharmacology*
;
Injections, Intraperitoneal
;
Male
;
Neurons/pathology*
;
Nitrogen/metabolism*
;
Oxygen/metabolism*
;
Protein Serine-Threonine Kinases
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/metabolism*
;
Sirolimus/pharmacology*
;
Spinal Cord Ischemia/pathology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Xenon/therapeutic use*
;
bcl-2-Associated X Protein/metabolism*
6.Pilea umbrosa ameliorate CCl induced hepatic injuries by regulating endoplasmic reticulum stress, pro-inflammatory and fibrosis genes in rat.
Irum NAZ ; Muhammad Rashid KHAN ; Jawaid Ahmed ZAI ; Riffat BATOOL ; Zartash ZAHRA ; Aemin TAHIR
Environmental Health and Preventive Medicine 2020;25(1):53-53
BACKGROUND:
Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders.
METHODS:
Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries.
RESULTS:
Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), HO and nitrite increased in liver tissues of CCl treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl in rats retrieved the normal expression of these markers and prevented hepatic injuries.
CONCLUSION
Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.
Animals
;
Carbon Tetrachloride
;
adverse effects
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
etiology
;
pathology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Fibrosis
;
drug therapy
;
genetics
;
Inflammation
;
drug therapy
;
genetics
;
Liver
;
drug effects
;
enzymology
;
metabolism
;
Male
;
Protective Agents
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Urticaceae
;
chemistry
7.Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model
Janeesh Plakkal AYYAPPAN ; Kezia LIZARDO ; Sean WANG ; Edward YURKOW ; Jyothi F NAGAJYOTHI
Biomolecules & Therapeutics 2019;27(4):386-394
Trypanosoma cruzi infection results in debilitating cardiomyopathy, which is a major cause of mortality and morbidity in the endemic regions of Chagas disease (CD). The pathogenesis of Chagasic cardiomyopathy (CCM) has been intensely studied as a chronic inflammatory disease until recent observations reporting the role of cardio-metabolic dysfunctions. In particular, we demonstrated accumulation of lipid droplets and impaired cardiac lipid metabolism in the hearts of cardiomyopathic mice and patients, and their association with impaired mitochondrial functions and endoplasmic reticulum (ER) stress in CD mice. In the present study, we examined whether treating infected mice with an ER stress inhibitor can modify the pathogenesis of cardiomyopathy during chronic stages of infection. T. cruzi infected mice were treated with an ER stress inhibitor 2-Aminopurine (2AP) during the indeterminate stage and evaluated for cardiac pathophysiology during the subsequent chronic stage. Our study demonstrates that inhibition of ER stress improves cardiac pathology caused by T. cruzi infection by reducing ER stress and downstream signaling of phosphorylated eukaryotic initiation factor (P-elF2α) in the hearts of chronically infected mice. Importantly, cardiac ultrasound imaging showed amelioration of ventricular enlargement, suggesting that inhibition of ER stress may be a valuable strategy to combat the progression of cardiomyopathy in Chagas patients.
2-Aminopurine
;
Animals
;
Cardiomyopathies
;
Chagas Disease
;
Endoplasmic Reticulum
;
Endoplasmic Reticulum Stress
;
Heart
;
Humans
;
Lipid Droplets
;
Lipid Metabolism
;
Mice
;
Mortality
;
Pathology
;
Peptide Initiation Factors
;
Trypanosoma cruzi
;
Ultrasonography
8.Effects of excessive endoplasmic reticulum stress on lung ischemia/reperfusion induced myocardial injury in mice.
Bing-Qian XIANG ; Hui GAO ; Mao-Lin HAO ; Yong-Yue DAI ; Wan-Tie WANG
Chinese Journal of Applied Physiology 2018;34(1):8-13
OBJECTIVE:
To investigate the effects of excessive endoplasmic reticulum stress on lung ischemia/reperfusion (I/R) induced myocardial injury in mice.
METHODS:
Forty healthy SPF male C57BL/6J mice were divided into 4 groups randomly (=10):sham operation group (Sham group), lung I/R group (I/R group), endoplasmic reticulum stress (ERS) pathway agonist Tunicamycin group (TM) and ERS inhibitor 4-phenyl butyric acid group (4-PBA). The model of lung I/R injury was established by clamping the left hilum of lung for 30 min followed by 180 min of reperfusion. In sham group, only sternotomy was performed, the hilum of lung was not clamped, and the mice were mechanically ventilated for 210 min. In TM and 4-PBA groups, TM 1mg/kg and 4-PBA 400 mg/kg were injected intraperitoneally, respectively, at 30 min before establishment of the model. At 180 min of reperfusion, blood samples were collected from the orbit for determination of myocardial enzyme. The animals were then sacrificed, and hearts were removed for determination of light microscope, TUNEL, Caspase 3 enzymatic activity, real-time polymerase chain reaction and Western blot.
RESULTS:
Compared with sham group, the cardiomyocytes had obvious damage under light microscope, and the serum creatine kinase-MB (CK-MB) and lactic dehydrogenase (LDH) activities, apoptosis index and Caspase 3 enzymatic activity were increased significantly, the expressions of p-Jun N-terminalkinase(p-JNK), Caspase 12, CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose regulated protein 78(GRP78) protein and mRNA were up-regulated in I/R, TM and 4-PBA groups (<0.01). Compared with I/R group, the cardiomyocytes damage was obvious under light microscope, and the serum CK-MB and LDH activities, apoptosis index and Caspase 3 enzymatic activity were increased significantly, the expressions of p-JNK, Caspase 12, CHOP and GRP78 protein and mRNA were up-regulated in group TM; while all above changes were relieved in group 4-PBA (<0.01). Compared with TM group, the cardiomyocytes damage was relieved under light microscope, and the serum CK-MB and LDH activities, apoptosis index and Caspase 3 enzymatic activity were decreased significantly, the expressions of p-JNK, Caspase 12,CHOP and GRP78 protein and mRNA were down-regulated in group 4-PBA.
CONCLUSIONS
The excessive endoplasmic reticulum stress participates in myocardial injury induced by lung ischemia/reperfusion (I/R) and inhibit excessive endoplasmic reticulum stress response can relieved myocardial injury.
Animals
;
Apoptosis
;
Caspase 12
;
Caspase 3
;
metabolism
;
Creatine Kinase, MB Form
;
blood
;
Endoplasmic Reticulum Stress
;
Heart Injuries
;
physiopathology
;
Heat-Shock Proteins
;
metabolism
;
L-Lactate Dehydrogenase
;
blood
;
Lung
;
pathology
;
MAP Kinase Kinase 4
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Myocardium
;
pathology
;
Random Allocation
;
Reperfusion Injury
;
Transcription Factor CHOP
;
metabolism
10.Dual role for the unfolded protein response in the ovary: adaption and apoptosis.
Ning HUANG ; Yang YU ; Jie QIAO
Protein & Cell 2017;8(1):14-24
The endoplasmic reticulum (ER) is the principal organelle responsible for several specific cellular functions including synthesis and folding of secretory or membrane proteins, lipid metabolism, and Ca storage. Different physiological as well as pathological stress conditions can, however, perturb ER homeostasis, giving rise to an accumulation of unfolded or misfolded proteins in the ER lumen, a condition termed ER stress. To deal with an increased folding demand, cells activate the unfolded protein response (UPR), which is initially protective but can become detrimental if ER stress is severe and prolonged. Accumulating evidence demonstrates a link between the UPR and ovarian development and function, including follicular growth and maturation, follicular atresia, and corpus luteum biogenesis. Additionally, ER stress and the UPR may also play an important role in the ovary under pathological conditions. Understanding the molecular mechanisms related to the dual role of unfolded protein response in the ovarian physiology and pathology may reveal the pathogenesis of some reproductive endocrine diseases and provide a new guidance to improve the assisted reproductive technology. Here we review the current literature and discuss concepts and progress in understanding the UPR, and we also analyze the role of ER stress and the UPR in the ovary.
Animals
;
Apoptosis
;
Calcium
;
metabolism
;
Endoplasmic Reticulum
;
metabolism
;
pathology
;
Female
;
Humans
;
Lipid Metabolism
;
Ovarian Diseases
;
metabolism
;
pathology
;
therapy
;
Ovary
;
metabolism
;
pathology
;
Unfolded Protein Response

Result Analysis
Print
Save
E-mail