1.Secondary metabolites of endophyte fungi Xylaria sp. from Coptis chinensis.
Guo-Ping YIN ; Ya-Juan LI ; Bo LI ; Xue-Mei LIU ; Jing-Jing ZHU ; Zhi-Min WANG ; Chang-Hua HU
China Journal of Chinese Materia Medica 2022;47(8):2165-2169
Two new polyketides, lasobutone A(1) and lasobutone B(2), along with three known compounds, guignardianone C(3), guignardic acid(4), and 4-hydroxy-17R-methylincisterol(5), were isolated from the endophytic fungi Xylaria sp. by silica gel, MCI, and preparative HPLC, which was separated from the Chinese medicinal material Coptis chinensis and cultivated through solid fermentation with rice. Their structures were elucidated on the basis of spectroscopic methods, such as MS, NMR, IR, UV, and ECD. Compounds 2 and 4 showed inhibitory activities against the nitric oxide(NO) production in the LPS-induced macrophage RAW264.7 with IC_(50) values of 58.7 and 42.5 μmol·L~(-1) respectively, while compound 5 exhibited cytotoxic activities against HT-29 with IC_(50) value of 14.3 μmol·L~(-1).
Antineoplastic Agents
;
Coptis chinensis
;
Endophytes/chemistry*
;
Fungi
;
Polyketides/chemistry*
2.A preliminary study on origin of ligustrazine in Chuanxiong Rhizoma based on endogenetic Bacillus subtilis.
Dan-Dan YIN ; Mo YANG ; Yun-Lai WANG ; Hao-Kun LIU ; Min ZHOU ; Fan XU
China Journal of Chinese Materia Medica 2018;43(19):3893-3898
Ligustrazine is an important active ingredient of the traditional Chinese medicine Chuanxiong Rhizoma, but its content is a controversial topic. The endophytes of medicinal plants have the ability to produce the same active substances as the host, so this report focused on the endophytic Bacillus subtilis, to study the origin of ligustrazine in Chuanxiong Rhizoma preliminarily by inoculating the isolated endophytic B. subtilis to the Chuanxiong Rhizoma medium for solid state fermentation. Tissue grinding method was used to isolate the endogenetic B. subtilis. The morphological features, conventional physiological and biochemical reactions and 16S rRNA molecular techniques were combined to identify the endogenetic strains. Then, the strains that grew well in the medicinal matrix of Chuanxiong Rhizoma were screened out for further fermentation studies. The solid-state fermentation was performed at 37 °C for 30 d using Chuanxiong Rhizoma fermentation medium (40 g Chuanxiong Rhizoma powder, 100 mL sterile water, 121 °C, sterilization for 25 minutes). UPLC was used to detect the contents of ligustrazine, acetoin in the Chuanxiong Rhizoma fermentation medium and Chuanxiong Rhizoma. All the five strains were Gram-positive and had spores. Phylogenetic analysis of the 16S rRNA sequence showed that the endophytes were B. subtilis. The results of UPLC showed that ligustrazine was detected in the Chuanxiong Rhizoma fermentation medium inoculated with endogenetic B. subtilis LB3, LB3-2-1, LB4, LB5 and LB6-2, while not detected neither in blank Chuanxiong Rhizoma fermentation medium nor in Chuanxiong Rhizoma. This study showed that the endogenetic B. subtilis of Ligusticum chuanxiong Hort. can make use of Chuanxiong Rhizoma fermentation medium to produce ligustrazine. Endogenetic B. subtilis has a certain correlation with the accumulation of ligustrazine in Rhizoma Chuanxiong. We speculate that the ligustrazine may be derived from the catabolism of endogenetic B. subtilis in Ligusticum chuanxiong.
Bacillus subtilis
;
Endophytes
;
Fermentation
;
Ligusticum
;
chemistry
;
microbiology
;
Phylogeny
;
Pyrazines
;
analysis
;
RNA, Ribosomal, 16S
;
Rhizome
;
chemistry
3.Secondary metabolites from Epicoccum nigrum 14one,an endophytic fungus isolated from plant Leptogium masiaticum.
Chao YUAN ; Yu-Hua GUO ; Ying-Bo ZHANG ; Xuan HU ; Dan WANG ; Fu-Lai YU ; Gang LI
China Journal of Chinese Materia Medica 2019;44(18):4021-4025
Phytochemical investigation of the culture of Epicoccum nigrum,an endolichenic fungus inhabiting Leptogium masiaticum,led to the isolation of 11 compounds. Based on NMR spectroscopy and HRESIMS data,their structures were determined as one alkaloid fusaricide( 1),and seven benzofuran derivatives including epicoccone( 2),4,6-dihydroxy-5-methoxy-7-methyl-1,3-dihydro isobenzofuran( 3),5-methyl-epicoccone B( 4),3,6,7-trihydroxy-5-methoxy-4-methylisobenzo furan-1( 3 H)-one( 5),3-methoxyepicoccone B( 6),2,3,4-trihydroxy-6-( hydroxymethyl)-5-methylbenzyl-alcohol( 7),and isoochracinic acid( 8),together with three epicoccolide analogs epicocconigrones A( 9),epicoccolide B( 10),and epicocconigrones B( 11). Compounds 1,9 and 10 showed potent microorganism inhibitory effects. These results indicated the potential perspective of this endophytic fungus as an eco-friendly biocide.
Ascomycota/chemistry*
;
Endophytes/chemistry*
;
Magnetic Resonance Spectroscopy
;
Microbial Sensitivity Tests
;
Secondary Metabolism
4.A new phenolic compound from endophytic fungus Aspergillus fumigatus of Euphorbia royleana.
Yan-Jun CHEN ; Yan-Qi SUN ; Rui-Qi ZHANG ; Li-Jun ZHU ; Yi-Jian CHEN ; Li-Juan YANG ; Min ZHOU ; Miao DONG ; Yan-Qing YE
China Journal of Chinese Materia Medica 2019;44(24):5429-5432
This research was carried out to study the secondary metabolites of endophytic fungus Aspergillosis fumigatus from Euphorbia royleana. The endophytic fungus A. fumigatus was fermented by solid fermentation,and purified by various chromatographic methods after extraction. The structures of the compounds were identified by1 H-NMR,13 C-NMR and HSQC,HMBC spectra and physicchemical properties. Three compounds were isolated and their structures were identified as 3-( 3,4-dihydroxybenzoyl)-5-( 3,4-dihydroxyphenyl)-6-methyl-5,6-dihydro-2 H-pyran-2-one( 1),hydroxysydonic acid( 2) and 11-hydroxysydonic acid( 3). Compound 1 is a new compound.
Aspergillus fumigatus/chemistry*
;
Endophytes/chemistry*
;
Euphorbia/microbiology*
;
Fermentation
;
Phenols/isolation & purification*
5.Correlation analysis between foliar endophytic fungi of Salvia miltiorrhiza and effective components.
Xiao-li DING ; Jian-jun SUN ; Jian LIANG ; Na WANG ; Lang-jun CUI
China Journal of Chinese Materia Medica 2015;40(14):2800-2806
The aim of this study was to comprehensively investigate the correlations between foliar fungal endophyte communities and effective components accumulations in Salvia miltiorrhiza. Foliar samples of S. miltiorrhiza were collected in 5 different areas. Their fungal endophyte communities and effective component contents were determined by denaturing gradient gel electrophoresis (DGGE) and high performance liquid chromatography (HPLC), respectively. The results showed that, for characteristics of foliar fungal endophyte communities and effective component contents, there were both similarities and differences among the five samples. Correlation analysis of DGGEs' band and 24 effective components revealed a significant correlations (P < 0.01). For examples, 4 bands (15, 18, 23 and 26) were all significantly correlated with the accumulations of caffeic acid, salvianolic acid B, salvianolic acid C and dihydrotanshinone I.
Chromatography, High Pressure Liquid
;
Cluster Analysis
;
Denaturing Gradient Gel Electrophoresis
;
Endophytes
;
chemistry
;
Fungi
;
chemistry
;
Salvia miltiorrhiza
;
chemistry
;
microbiology
6.Study on secondary metabolites of endophytic fungi Penicillium dangeardii.
Hai-ning LV ; Guang-zhi DING ; Yun-bao LIU ; Jing QU
China Journal of Chinese Materia Medica 2015;40(9):1759-1761
Endophytic fungi Penicillium dangeardii, isolated from Lysidice rhodostegia Hance root, was fermented and the secondary metabolites were studied. By means of Sephadex LH-20 column chromatography, ODS column chromatography and PHPLC over the fermented culture, 5 compounds were isolated. By using ESI-MS and NMR, the structures of the compounds were determined as N-[9-(β- D-ribofuranosyl)-9H-purin-6-yl]-L-aspartic acid (1), 3-caffeoylquinic acid (2), 4-caffeoylquinic acid (3), and 5-caffeoylquinic acid (4), 3-hydroxy-benzoic acid-4-O-β-D-glucopyranoside (5).
Biological Factors
;
chemistry
;
isolation & purification
;
metabolism
;
Endophytes
;
chemistry
;
metabolism
;
Fabaceae
;
microbiology
;
Fermentation
;
Molecular Structure
;
Penicillium
;
chemistry
;
metabolism
;
Secondary Metabolism
7.A new indole derivative from endophyte Myrothecium roridum IFB-E091 in Artemisia annua.
Li SHEN ; Ling-yu LI ; Xiao-jun ZHANG ; Ming LI ; Yong-chun SONG
Acta Pharmaceutica Sinica 2015;50(10):1305-1308
Three compounds were isolated from solid culture of endophyte Myrothecium roridum IFB-E091 in Artemisia annua. Their structures were determined as (S)-(-)-N-[2-(3-hydroxy-2-oxo-2,3-dihydro-1H-indol-3-yl)-ethyl]-acetamide (1), N-(4-hydroxyphenethyl)acetamide (2) and asperfumoid (3), in which compound 1 was a new indole derivative. In cytotoxicity assay, the compound 1 had no obvious inhibition activity in human hepatoma cell line SMMC-7721 and human cervical carcinoma cell line HeLa.
Artemisia annua
;
microbiology
;
Cell Line, Tumor
;
drug effects
;
Endophytes
;
chemistry
;
Humans
;
Hypocreales
;
chemistry
;
Indoles
;
chemistry
;
isolation & purification
8.Chemical constituents of endophytic fungus Nodulisporium sp. A4 from Aquilaria sinensis.
Dongli LI ; Zhengchao WU ; Yuchan CHEN ; Meihua TAO ; Weimin ZHANG
China Journal of Chinese Materia Medica 2011;36(23):3276-3280
OBJECTIVETo investigate the chemical constituents of an endophytic fungus, Nodulisporium sp. A4, from the medicinal plant Aquilaria sinensis and search for antitumor natural products.
METHODThe fungus was cultured in liquid medium and extracted with EtOAc. The compounds were isolated by various chromatographic methods (silica gel, reverse silica gel, Sephadex-LH20, preparative TLC and so on) and recrystallization. Structural elucidation was conducted by extensive analysis of spectroscopic data as well as by comparison with literature reports. The antitumor activity of isolated compounds was tested by MTT method in vitro.
RESULTSeven compounds were isolated and identified from the broth culture, their structures were determined to be 5-methyl-2-vinyltetrahydrofuran-3-ol (1), 6-methyl-2-(5-methyl-5-vinyltetrahydrofuran-2-yl) hept-5-en-2-ol (2), 6alpha-hydroxycyclonerolidol (3), rel-(1S,4S, 5R,7R,10R)-10-desmethyl-1-methyl-11-eudesmene (4), tyrosol (5), 8-methoxynaphthalen-1-ol (6), and 1,8-dimethoxynaphthalene (7). Three compounds were isolated and identified from the mycelia as ergosterol (8), ergosterol peroxide (9), and cerevisterol (10). The in vitro pharmalogical evaluation results displayed that compounds 3 and 4 showed 89.1%, 44.2% and 82.3%, 79.8% inhibition against tumor cell lines SF268 and NCI-H460 at 100 mg x L(-1), respectively.
CONCLUSIONCompound 1 was a new natural product, compounds 2, 3, 7 and 10 were reported from the genus Nodulisporium sp. for the first time. Compounds 3 and 4 exhibited weak inhibitory effects on the proliferation of tumor cell lines SF268 and NCI-H460.
Cell Line, Tumor ; Cell Proliferation ; drug effects ; Endophytes ; chemistry ; Humans ; Organic Chemicals ; chemistry ; isolation & purification ; pharmacology ; Thymelaeaceae ; microbiology ; Xylariales ; chemistry
9.Study on secondary metabolites of endophytic fungi Penicillium polonicum.
Jing LIU ; Guang-Zhi DING ; Lei FANG ; Shi-Shan YU
China Journal of Chinese Materia Medica 2014;39(20):3974-3977
The PDB culture medium was selected to ferment the endophyte strain, and the secondary metabolites of endophytic fungi Penicillium polonicum were studied. Combined application of Sephadex LH-20, ODS and HPLC chromatographies over the ethyl acetate extract of the fermented culture led to the isolation of 6 compounds. By spectral methods, the structures were elucidated as [3, 5-dihydroxy-2-(7-hydroxy-octanoyl)]-ethylphenylacetate (1), (3, 5-dihydroxy-2- octanoyl)-ethyl phenylacetate (2), (5, 7-di- hydroxy-9-heptyl)-isobenzo pyran-3-one (3), 3-(hydroxymethyl) 4-(1E)-1- propen-1-yl-(1R, 2S, 5R, 6S)-7-oxabicyclo [4.1.0] hept-3-ene-2, 5-diol (4), (E)-2-methoxy-3-(prop-1-enyl) phenol (5) and p-hydroxylphenylethanol (6).
Biological Factors
;
chemistry
;
metabolism
;
Endophytes
;
chemistry
;
isolation & purification
;
metabolism
;
Fabaceae
;
microbiology
;
Fermentation
;
Penicillium
;
chemistry
;
isolation & purification
;
metabolism
;
Secondary Metabolism
10.Isolation and identification of endophytic fungi from Chelidonium majus and their antifungal activity.
Ting HUANG ; Wei XIE ; Xiao-Dong LIU ; Kai-Xun TANG ; Rui YANG
China Journal of Chinese Materia Medica 2019;44(3):460-464
In order to find new source of antifungal agents, eleven cultivable endophytic fungi were isolated from the roots,stems and leaves of Chelidonium majus by traditional method. Seven of them were identified as Colletotrichum(L1, L2, L3, S1, S3, S4, S5), and three of them were identified as Fusarium(R1,R2,R3) by morphological features and molecular biological technology. The antifungal activity test showed that all the tested fungi displayed some inhibitory activity against five common plant pathogens(C. gloeosporioides, Curvularia lunata, Pyricularia oryza, Alternaria alternate and A. brassicae), and their inhibition rate of some test items were over 60%. Among them, R1, S2, S3 and S4 were more potent than others. This study enriches the understanding of endophytes from Ch. majus and provides a basis for the study of new microbial fungicides.
Alternaria
;
pathogenicity
;
Antibiosis
;
Ascomycota
;
pathogenicity
;
Chelidonium
;
microbiology
;
Colletotrichum
;
chemistry
;
isolation & purification
;
Endophytes
;
chemistry
;
isolation & purification
;
Fusarium
;
chemistry
;
isolation & purification