1.PCR-based detection of genes encoding virulence determinants in Staphylococcus aureus from bovine subclinical mastitis cases.
Dewanand Rajaram KALOREY ; Yuvaraj SHANMUGAM ; Nitin Vasantrao KURKURE ; Kapil Kamalakarrao CHOUSALKAR ; Sukhadeo Baliram BARBUDDHE
Journal of Veterinary Science 2007;8(2):151-154
The present study was carried out to genotypically characterize Staphylococcus aureus (S. aureus) isolated from bovine mastitis cases. A total of 37 strains of S. aureus were isolated during processing of 552 milk samples from 140 cows. The S. aureus strains were characterized phenotypically, and were further characterized genotypically by polymerase chain reaction using oligonucleotide primers that amplified genes encoding coagulase (coa), clumping factor (clfA), thermonuclease (nuc), enterotoxin A (entA), and the gene segments encoding the immunoglobulin G binding region and the X region of protein A gene spa. All of the isolates yielded an amplicon with a size of approximately 1,042 bp of the clfA gene. The amplification of the polymorphic spa gene segment encoding the immunoglobulin G binding region was observed in 34 isolates and X-region binding was detected in 26 isolates. Amplification of the coa gene yielded three different products in 20, 10, and 7 isolates. The amplification of the thermonuclease gene, nuc, was observed in 36 out of 37 isolates. All of the samples were negative for the entA gene. The phenotypic and genotypic findings of the present strategies might provide an understanding of the distribution of the prevalent S. aureus clones among bovine mastitis isolates, and might aid in the development of steps to control S. aureus infections in dairy herds.
Animals
;
Bacterial Proteins/chemistry/genetics
;
Cattle
;
Coagulase/chemistry/genetics
;
DNA, Bacterial/chemistry/genetics
;
Endonucleases/chemistry/genetics
;
Female
;
Mastitis, Bovine/*microbiology
;
Micrococcal Nuclease/chemistry/genetics
;
Milk/microbiology
;
Polymerase Chain Reaction/veterinary
;
Staphylococcal Infections/microbiology/*veterinary
;
Staphylococcus aureus/*genetics/pathogenicity
;
Virulence Factors/chemistry/*genetics
2.Study of UV DNA Repair Endonucleases with Respect to Skin Cancers.
Joon KIM ; Yong Suk NAM ; Young In PARK
Journal of the Korean Cancer Association 1997;29(4):599-607
No abstract available
DNA Repair*
;
DNA*
;
Endonucleases*
;
Skin Neoplasms*
;
Skin*
;
Xeroderma Pigmentosum
3.Application and optimization of CRISPR/Cas system in bacteria.
Junhao FU ; Fayu YANG ; Haihua XIE ; Feng GU
Chinese Journal of Biotechnology 2019;35(3):341-350
Clustered regular interspaced short palindromic repeats (CRISPR) system has been widely used in recent years. Compared with traditional genome editing technology, CRISPR/Cas system has notable advantages, including high editing efficiency, high specificity, low cost and the convenience for manipulation. Type Ⅱ and Ⅴ CRISPR/Cas system only requires a single Cas9 protein or a single Cpf1 protein as effector nucleases for cutting double-stranded DNA, developed as genome editing tools. At present, CRISPR/Cas9 technology has been successfully applied to the genome editing of eukaryotes such as zebrafish, mice and human cells, whereas limited progress has been made in the genome editing of bacteria. In our review, we describe CRISPR/Cas system, its mechanism and summarize the optimization and progress of genome editing in bacteria.
Animals
;
Bacteria
;
CRISPR-Cas Systems
;
Endonucleases
;
Gene Editing
;
Humans
;
Mice
4.Regulatory framework of genome-edited products - a review.
Yuanyuan YAN ; Jinjie ZHU ; Chuanxiao XIE ; Changlin LIU
Chinese Journal of Biotechnology 2019;35(6):921-930
Genome editing is a genetic engineering technique that uses site-directed cleavage activity of specific artificial nucleases and endogenous DNA damage repair activity to generate insertions, deletions or substitutions in the targeted genomic loci. As the accuracy and efficiency of genome editing is improving and the operation is simple, the application of genome editing is expanding. This article provides an overview of the three major genome editing technologies and genome editing types, and the regulatory frameworks for genome-edited products were summarized in the United States, the European Union, and other countries. At the same time, based on the Chinese safety management principles and systems for genetically modified organisms (GMOs), the authors proposed a regulatory framework for genome-edited products. Genome-edited products should first be classified according to whether containing exogenous genetic components such as Cas9 editing enzymes or not. They should be regulated as traditional genetically modified organisms if they do. Otherwise, the regulation of genome-edited products depends on targeted modifications.
CRISPR-Cas Systems
;
Endonucleases
;
Gene Editing
;
Genome
;
Mutagenesis, Site-Directed
5.Advances of CRISPR/dCas9 system in live cell imaging.
Siyu LIN ; Xing ZHONG ; Lixin MA ; Jie QIAO ; Yi LIU
Chinese Journal of Biotechnology 2021;37(9):3061-3070
The study of distinct genes, chromosomes and the spatio-temporal relationships between them is of great significance in genetics, developmental biology and biomedicine. CRISPR/Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. Recently, researchers have developed a series of advanced live cell imaging techniques based on the nuclease-inactivated mutant of Cas9 (dCas9), providing rapid and convenient tools for high-resolution imaging of specific sites in the chromatin and genome. This review summarizes the advances of CRISPR/dCas9 system in live cell imaging from three aspects, including the strategies of cell delivery, optimization of the fluorescence signals, as well as orthogonal and multicolor imaging. Furthermore, we shed light on the development trends and prospects of this field.
CRISPR-Cas Systems/genetics*
;
Chromatin
;
Endonucleases
;
Gene Editing
6.Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
Experimental & Molecular Medicine 2002;34(4):313-317
Trinucleotide repeat (TNR) instability can cause a variety of human genetic diseases including myotonic dystrophy and Huntington's disease. Recent genetic data show that instability of the CAG/CTG repeat DNA is dependent on its length and replication origin. In yeast, the RAD27 (human FEN-1 homologue) null mutant has a high expansion frequency at the TNR loci. We demonstrate here that FEN-1 processes the 5'-flap DNA of CTG/CAG repeats, which is dependent on the length in vitro. FEN-1 protein can cleave the 5'-flap DNA containing triplet repeating sequence up to 21 repeats, but the activity decreases with increasing size of flap above 11 repeats. In addition, FEN-1 processing of 5'-flap DNA depends on sequence, which play a role in the replication origin-dependent TNR instability. Interestingly, FEN-1 can cleave the 5'-flap DNA of CTG repeats better than CAG repeats possibly through the flap-structure. Our biochemical data of FEN-1's activity with triplet repeat DNA clearly shows length dependence, and aids our understanding on the mechanism of TNR instability.
Base Sequence
;
DNA, Single-Stranded/*metabolism
;
Endodeoxyribonucleases/genetics/*metabolism
;
Flap Endonucleases
;
Gene Expression Regulation
;
Genetic Diseases, Inborn/*genetics
;
Human
;
Nucleic Acid Conformation
;
Trinucleotide Repeat Expansion
;
*Trinucleotide Repeats
7.Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
Experimental & Molecular Medicine 2002;34(4):313-317
Trinucleotide repeat (TNR) instability can cause a variety of human genetic diseases including myotonic dystrophy and Huntington's disease. Recent genetic data show that instability of the CAG/CTG repeat DNA is dependent on its length and replication origin. In yeast, the RAD27 (human FEN-1 homologue) null mutant has a high expansion frequency at the TNR loci. We demonstrate here that FEN-1 processes the 5'-flap DNA of CTG/CAG repeats, which is dependent on the length in vitro. FEN-1 protein can cleave the 5'-flap DNA containing triplet repeating sequence up to 21 repeats, but the activity decreases with increasing size of flap above 11 repeats. In addition, FEN-1 processing of 5'-flap DNA depends on sequence, which play a role in the replication origin-dependent TNR instability. Interestingly, FEN-1 can cleave the 5'-flap DNA of CTG repeats better than CAG repeats possibly through the flap-structure. Our biochemical data of FEN-1's activity with triplet repeat DNA clearly shows length dependence, and aids our understanding on the mechanism of TNR instability.
Base Sequence
;
DNA, Single-Stranded/*metabolism
;
Endodeoxyribonucleases/genetics/*metabolism
;
Flap Endonucleases
;
Gene Expression Regulation
;
Genetic Diseases, Inborn/*genetics
;
Human
;
Nucleic Acid Conformation
;
Trinucleotide Repeat Expansion
;
*Trinucleotide Repeats
8.Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome.
Meiqin ZHU ; Jian YU ; Changlin ZHOU ; Hongqing FANG
Chinese Journal of Biotechnology 2016;32(1):114-126
Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.
Chromosomes, Bacterial
;
genetics
;
DNA
;
Endonucleases
;
metabolism
;
Escherichia coli
;
genetics
;
Genetic Engineering
;
methods
;
Recombination, Genetic
;
Sequence Deletion
9.Progress of new-generation genome editing mediated by engineered endonucleases.
Chinese Journal of Biotechnology 2015;31(6):917-928
Genome editing refers to the experimental methods to targeted modify specific loci in the genomic DNA sequence. In recent years, engineered endonucleases, including ZFN, TALEN and CRISPR/Cas, have been developed as a new-generation genome editing technique, and greatly improved the feasibility of gene function analyses, gene therapy, etc. Here, we briefly summarize the basic principle, developmental process and applications of this technology.
Clustered Regularly Interspaced Short Palindromic Repeats
;
Endonucleases
;
genetics
;
Genetic Engineering
;
methods
;
Genetic Therapy
;
Genome
;
Genomics
10.Advances in transcription activator-like effectors--a review.
Chinese Journal of Biotechnology 2015;31(7):1024-1038
As a protein originally found in plant pathogenic bacteria, transcription activator-like effectors (TALEs) can be fused with the cleaving domain of restriction endonuclease (For example Fok I) to form artificial nucleases named TALENs. These proteins are dependent on variable numbers of tandem Repeats of TALEs to recognize and bind DNA sequences. Each of these repeats consists of a set of approximately 34 amino acids, composed of about 32 conserved amino acids and 2 highly variable amino acids called repeat variant di-residues (RVDs). RVDs distinguish one TALE from another and can make TALEs have a simple cipher for the one-to-one recognition for proteins and DNA bases. Based on this, in theory, artificially constructed TALENs could recognize and break DNA sites specifically and arbitrarily to perform gene knockout, insertion or modification. We reviewed the development of this technology in multi-level and multi species, and its advantages and disadvantages compared with ZFNs and CRISPR/Cas technology. We also address its special advantages in industrial microbe breeding, vector construction, targeting precision, high efficiency of editing and biological safety.
Amino Acid Motifs
;
Biotechnology
;
DNA
;
chemistry
;
Endonucleases
;
chemistry
;
Tandem Repeat Sequences
;
Trans-Activators
;
chemistry