1.Editing base in mouse model.
Protein & Cell 2017;8(8):558-559
2.Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
Experimental & Molecular Medicine 2002;34(4):313-317
Trinucleotide repeat (TNR) instability can cause a variety of human genetic diseases including myotonic dystrophy and Huntington's disease. Recent genetic data show that instability of the CAG/CTG repeat DNA is dependent on its length and replication origin. In yeast, the RAD27 (human FEN-1 homologue) null mutant has a high expansion frequency at the TNR loci. We demonstrate here that FEN-1 processes the 5'-flap DNA of CTG/CAG repeats, which is dependent on the length in vitro. FEN-1 protein can cleave the 5'-flap DNA containing triplet repeating sequence up to 21 repeats, but the activity decreases with increasing size of flap above 11 repeats. In addition, FEN-1 processing of 5'-flap DNA depends on sequence, which play a role in the replication origin-dependent TNR instability. Interestingly, FEN-1 can cleave the 5'-flap DNA of CTG repeats better than CAG repeats possibly through the flap-structure. Our biochemical data of FEN-1's activity with triplet repeat DNA clearly shows length dependence, and aids our understanding on the mechanism of TNR instability.
Base Sequence
;
DNA, Single-Stranded/*metabolism
;
Endodeoxyribonucleases/genetics/*metabolism
;
Flap Endonucleases
;
Gene Expression Regulation
;
Genetic Diseases, Inborn/*genetics
;
Human
;
Nucleic Acid Conformation
;
Trinucleotide Repeat Expansion
;
*Trinucleotide Repeats
3.Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
Experimental & Molecular Medicine 2002;34(4):313-317
Trinucleotide repeat (TNR) instability can cause a variety of human genetic diseases including myotonic dystrophy and Huntington's disease. Recent genetic data show that instability of the CAG/CTG repeat DNA is dependent on its length and replication origin. In yeast, the RAD27 (human FEN-1 homologue) null mutant has a high expansion frequency at the TNR loci. We demonstrate here that FEN-1 processes the 5'-flap DNA of CTG/CAG repeats, which is dependent on the length in vitro. FEN-1 protein can cleave the 5'-flap DNA containing triplet repeating sequence up to 21 repeats, but the activity decreases with increasing size of flap above 11 repeats. In addition, FEN-1 processing of 5'-flap DNA depends on sequence, which play a role in the replication origin-dependent TNR instability. Interestingly, FEN-1 can cleave the 5'-flap DNA of CTG repeats better than CAG repeats possibly through the flap-structure. Our biochemical data of FEN-1's activity with triplet repeat DNA clearly shows length dependence, and aids our understanding on the mechanism of TNR instability.
Base Sequence
;
DNA, Single-Stranded/*metabolism
;
Endodeoxyribonucleases/genetics/*metabolism
;
Flap Endonucleases
;
Gene Expression Regulation
;
Genetic Diseases, Inborn/*genetics
;
Human
;
Nucleic Acid Conformation
;
Trinucleotide Repeat Expansion
;
*Trinucleotide Repeats
4.Expression, purification and characterization of non-specific Serratia nuclease in Escherichia coli.
Peng CHEN ; Haiyan YANG ; Huijing LI ; Longyu YANG ; Xuejun LI
Chinese Journal of Biotechnology 2011;27(8):1247-1257
To efficiently produce non-specific nuclease (NU) of Serratia marcescens through recombinant overexpression approach and to characterize the purified NU. The nuclease gene was amplified from the genomic DNA of Serratia marcescens by PCR and fused into vector pMAL-c4X with maltose binding protein (MBP) tag. The recombinant vector verified by DNA sequencing was transformed into Escherichia coli BL21. The expressed MBP-NU was purified through the amylose resin and its catalytic characters were analyzed. The results showed the NU gene had 97% identities with the reported S. marcescens nuclease gene and intracellularly expressed in E. coli BL21. The optimal expression conditions were 37 degrees C, 0.75 mmol/L IPTG with 1.5 h induction. The purified MBP-NU exhibited non-specific nuclease activity, able to degrade various nucleic acids, including RNA, single-stranded DNA and double-stranded DNA that was circular or linear. Its optimal temperature was 37 degrees C and optimal pH 8.0. From 1 L culture broth 10.8 mg NU could be purified with a specific activity of 1.11x10(6) U/mg. The catalytic activity of NU was not inhibited by reagents such as EDTA (0.5 mmol/L), PMSF (1 mmol/L) and KCl (150 mmol/L) commonly used in protein purification.
Base Sequence
;
Endodeoxyribonucleases
;
biosynthesis
;
genetics
;
Endoribonucleases
;
biosynthesis
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Maltose-Binding Proteins
;
genetics
;
Molecular Sequence Data
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
isolation & purification
;
Serratia marcescens
;
enzymology
5.The key role of CYC2 during meiosis in Tetrahymena thermophila.
Qianlan XU ; Ruoyu WANG ; A R GHANAM ; Guanxiong YAN ; Wei MIAO ; Xiaoyuan SONG
Protein & Cell 2016;7(4):236-249
Meiotic recombination is carried out through a specialized pathway for the formation and repair of DNA double-strand breaks (DSBs) made by the Spo11 protein. The present study shed light on the functional role of cyclin, CYC2, in Tetrahymena thermophila which has transcriptionally high expression level during meiosis process. Knocking out the CYC2 gene results in arrest of meiotic conjugation process at 2.5-3.5 h after conjugation initiation, before the meiosis division starts, and in company with the absence of DSBs. To investigate the underlying mechanism of this phenomenon, a complete transcriptome profile was performed between wild-type strain and CYC2 knock-out strain. Functional analysis of RNA-Seq results identifies related differentially expressed genes (DEGs) including SPO11 and these DEGs are enriched in DNA repair/mismatch repair (MMR) terms in homologous recombination (HR), which indicates that CYC2 could play a crucial role in meiosis by regulating SPO11 and participating in HR.
Cell Cycle Checkpoints
;
Cyclins
;
genetics
;
metabolism
;
DNA Breaks, Double-Stranded
;
DNA Mismatch Repair
;
DNA Repair
;
Endodeoxyribonucleases
;
genetics
;
metabolism
;
Homologous Recombination
;
Meiosis
;
Microscopy, Fluorescence
;
Phenotype
;
Protozoan Proteins
;
genetics
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, RNA
;
Tetrahymena thermophila
;
genetics
;
metabolism
;
Transcriptome