1.Increased expression of neuronal nitric oxide synthase in astrocytes and macrophages in the spinal cord of Lewis rats with autoimmune encephalomyelitis.
Journal of Veterinary Science 2001;2(3):195-199
Neuronal nitric oxide synthase (nNOS) is constitutively expressed in neurons of the central nervous system, where it plays a physiological role in neurotransmission. In this study, we examined the functional role of nNOS in experimental autoimmune encephalomyelitis(EAE). The effects of the specific nNOS inhibitor 7-nitroindazole on normal and EAE rats were studied by immunohistochemistry and Western blot analysis. We found that nNOS is constitutively expressed in the spinal cords of normal rats, whilst in the spinal cords of EAE rats, nNOS expression slightly increased, concomitant with the infiltration of T cells and macrophages. Immunohistochemical studies showed that nNOS expression in macrophages and astrocytes increased at the peak stage of EAE and declined thereafter. Treatment with 7-nitroindazole (30 mg/kg) significantly delayed the onset of EAE paralysis, but had no effect on either the incidence or the severity of the paralysis. These findings suggest that nNOs inhibition has a limited role in the induction of rat EAE, and that constitutive nNOS in the spinal cord functions as a novel neurotransmitter, rather than a pro-inflammatory agent.
Animals
;
Astrocytes/*enzymology
;
Blotting, Western
;
Encephalomyelitis, Autoimmune, Experimental/drug therapy/*enzymology
;
Enzyme Inhibitors/therapeutic use
;
Immunohistochemistry
;
Indazoles/therapeutic use
;
Macrophages/*enzymology
;
Male
;
Nitric Oxide Synthase/antagonists&inhibitors/*metabolism
;
Rats
;
Rats, Inbred Lew
;
Spinal Cord/cytology/*enzymology
2.Effects of Zuogui Pill () and Yougui Pill () on the expression of brain-derived neurotrophic factor and cyclic adenosine monophosphate/protein kinase A signaling transduction pathways of axonal regeneration in model rats with experimental autoimmune encephalomyelitis.
Yi-zhou WANG ; Shuang KOU ; Ling-yun GU ; Qi ZHENG ; Ming LI ; Fang QI ; Hui ZHAO ; Lei WANG
Chinese journal of integrative medicine 2014;20(1):24-30
OBJECTIVETo study the effects of Zuogui Pill (, ZGP) and Yougui Pill (, YGP) on the expressions of brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling of axonal regeneration in the Lewis rats with experimental autoimmune encephalomyelitis (EAE), in order to explore the possible mechanism of ZGP and YGP on promoting axonal regeneration.
METHODSThe rats were randomly divided into normal control (NC), model (MO), prednisone acetate (PA), ZGP and YGP groups. The EAE model of rat was established by injecting antigen containing myelin basic protein (MBP)68-86. The brain and spinal cord were harvested on the 14th and 28th day post-immunization (PI), the protein and mRNA expression of BDNF and PKA in the brain and spinal cord of rats were detected by Western blot analysis and real-time quantitative polymerase chain reaction (PCR), and the cAMP levels were detected by using enzyme-immunoassay method.
RESULTS(1) On the 28th day PI, the mRNA expression of BDNF in brain white matter and spinal cord of rats in ZGP and YGP groups were up-regulated, especially in YGP group (P<0.05 or P<0.01). (2) On the 14th day PI, the cAMP levels in brain white matters significantly increased in PA and YGP groups compared with MO group (P<0.05 or P<0.01), and the cAMP level in YGP group was higher than that in ZGP group (P<0.05). The cAMP level in spinal cord also significantly increased in YGP group compared with MO, PA and ZGP groups, respectively (P<0.01). (3) On the 14th day PI, the PKA expression in spinal cord of rats in ZGP group was significantly decreased compared with MO and YGP groups, respectively (P<0.05). (4) On the 28th day PI, there was a positive correlation between cAMP and PKA expression in the brain white matter of YGP rats.
CONCLUSIONSThe results suggest that ZGP and YGP may promote axonal regeneration by modulating cAMP/PKA signal transduction pathway, but the targets of molecular mechanism of ZGP may be different from those of YGP.
Animals ; Axons ; drug effects ; pathology ; Brain ; drug effects ; metabolism ; pathology ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Cyclic AMP ; metabolism ; Cyclic AMP-Dependent Protein Kinases ; genetics ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; enzymology ; genetics ; Female ; Gene Expression Regulation ; drug effects ; Nerve Regeneration ; drug effects ; genetics ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Inbred Lew ; Signal Transduction ; drug effects ; genetics ; Spinal Cord ; drug effects ; metabolism ; pathology ; Tablets