1.A study on demyelinating effect of galactocerebroside in experimental allergic encephalomyelitis.
Shin Kwang KHANG ; Je G CHI ; Sang Kook LEE
Journal of Korean Medical Science 1988;3(3):89-98
An experimental allergic encephalomyelitis was induced by bovine myelin basic protein (MBP) and bovine galactocerebroside (GC) on male guinea pigs. Animals were divided into five experimental and one control groups. Among the five experimental groups, three were inoculated with 75 micrograms, 150 micrograms and 300 micrograms of MBP, respectively, to see the dose dependency of demyelination. The fourth group was inoculated with mixture of 75 micrograms of MBP and 180 micrograms of GC and the fifth group with 180 micrograms GC. All inocula was injected intradermally in emulsion state mixed with equal amount of complete Freund adjuvant. Control group was injected with adjuvant only. Clinical symptoms began to appear from 15th day after inoculation and animals were sacrificed on maximum neurologic deficit or 4 to 5 days after the onset of symptoms. Demyelination was observed in 6 out of 8 animals inoculated with MBP/GC mixture, while only 3 out of 24 animals inoculated with various dosage of MBP showed demyelination. The difference was statistically significant. Serum antibodies to MBP and GC were measured by ELISA method. All of the eight animals inoculated with MBP/GC mixture and two animals inoculated with GC had low titer of anti-GC antibodies, while all animals inoculated with MBP, MBP alone or MBP/GC mixture, had high titer of anti-MBP antibodies. Therefor it is concluded that the demyelination is augmented by GC and is not significantly dose-dependent on MBP.
Animals
;
Autoantibodies/*immunology
;
Central Nervous System/*immunology/pathology
;
Cerebrosides/*immunology
;
Dose-Response Relationship, Drug
;
Encephalomyelitis, Autoimmune, Experimental/*metabolism/pathology
;
Galactosylceramides/*immunology
;
Guinea Pigs
;
Male
;
Myelin Basic Protein/*immunology
2.A study on demyelinating effect of galactocerebroside in experimental allergic encephalomyelitis.
Shin Kwang KHANG ; Je G CHI ; Sang Kook LEE
Journal of Korean Medical Science 1988;3(3):89-98
An experimental allergic encephalomyelitis was induced by bovine myelin basic protein (MBP) and bovine galactocerebroside (GC) on male guinea pigs. Animals were divided into five experimental and one control groups. Among the five experimental groups, three were inoculated with 75 micrograms, 150 micrograms and 300 micrograms of MBP, respectively, to see the dose dependency of demyelination. The fourth group was inoculated with mixture of 75 micrograms of MBP and 180 micrograms of GC and the fifth group with 180 micrograms GC. All inocula was injected intradermally in emulsion state mixed with equal amount of complete Freund adjuvant. Control group was injected with adjuvant only. Clinical symptoms began to appear from 15th day after inoculation and animals were sacrificed on maximum neurologic deficit or 4 to 5 days after the onset of symptoms. Demyelination was observed in 6 out of 8 animals inoculated with MBP/GC mixture, while only 3 out of 24 animals inoculated with various dosage of MBP showed demyelination. The difference was statistically significant. Serum antibodies to MBP and GC were measured by ELISA method. All of the eight animals inoculated with MBP/GC mixture and two animals inoculated with GC had low titer of anti-GC antibodies, while all animals inoculated with MBP, MBP alone or MBP/GC mixture, had high titer of anti-MBP antibodies. Therefor it is concluded that the demyelination is augmented by GC and is not significantly dose-dependent on MBP.
Animals
;
Autoantibodies/*immunology
;
Central Nervous System/*immunology/pathology
;
Cerebrosides/*immunology
;
Dose-Response Relationship, Drug
;
Encephalomyelitis, Autoimmune, Experimental/*metabolism/pathology
;
Galactosylceramides/*immunology
;
Guinea Pigs
;
Male
;
Myelin Basic Protein/*immunology
3.TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization.
Siying QU ; Shengfeng HU ; Huiting XU ; Yongjian WU ; Siqi MING ; Xiaoxia ZHAN ; Cheng WANG ; Xi HUANG
Neuroscience Bulletin 2024;40(1):17-34
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Animals
;
Humans
;
Mice
;
CD4-Positive T-Lymphocytes/pathology*
;
Cell Differentiation
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Mice, Inbred C57BL
;
Multiple Sclerosis
;
Th1 Cells/pathology*
4.Embryonic Intermediate Filaments, Nestin and Vimentin, Expression in the Spinal Cords of Rats with Experimental Autoimmune Encephalomyelitis.
Tae Kyun SHIN ; Yong Duk LEE ; Ki Bum SIM
Journal of Veterinary Science 2003;4(1):9-13
Intermediate filaments, including nestin and vimentin, are found in specific cell types in central nervous system (CNS) tissues, particularly immature glial cells and multipotent progenitor cells. In the present study, the expression patterns of nestin and vimentin in the spinal cords of rats with experimental autoimmune encephalomyelitis (EAE) and the response of cells containing filaments against acute autoimmune injury were examined by immunohistochemistry. Nestin immunostaining was only weakly detected in vascular endothelial cells but not in any cell types in the spinal cord in normal and adjuvant-immunized rats. At the peak stage of EAE, nestin-immunoreativity was recognized in some astrocytes in the gray matter and white matter. Vimentin was immunopositive in some astrocytes and macrophages in EAE lesions, while vimentin was normally detected in ependymal cells of central canals in the rat spinal cords.We postulate that normal animals may contain multipotent progenitor cells in the spinal cord parenchyma as well as in the subpial lesion and ependyma. Multipotent progenitor cells may activate to transform into necessary cells, including neurons, astrocytes or oligodendrocytes, depending on CNS needs. Appropriate control of progenitor cells in the injured CNS is an alternative choice for CNS remodeling.
Animals
;
Encephalomyelitis, Autoimmune, Experimental/*metabolism/pathology
;
*Gene Expression Regulation
;
Intermediate Filament Proteins/*metabolism
;
*Nerve Tissue Proteins
;
Rats
;
Rats, Inbred Lew
;
Spinal Cord/cytology/*metabolism/pathology
;
Stem Cells/cytology
;
Vimentin/*metabolism
5.Immunohistochemical Localization of Bcl-2 in the Spinal Cords of Rats with Experimental Autoimmune Encephalomyelitis.
Chang Jong MOON ; Yong Duk LEE ; Tae Kyun SHIN
Journal of Veterinary Science 2002;3(4):279-283
We examined the localization of the anti-apoptotic molecule Bcl-2 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis (EAE). Western blot analysis showed that Bcl-2 was constitutively expressed in normal spinal cords, and weakly increased in response to complete Freund's adjuvant(CFA) immunization. In EAE, with infiltration of inflammatory cells into spinal cords, Bcl-2 declined during the peak stage and further decreased during the recovery stage. Immunohistochemically, some neurons and glial cells constitutively expressed Bcl-2 in normal rat spinal cords. In the spinal cords of rats with EAE, Bcl-2 was also immunoreacted in some perivascular inflammatory cells while some brain cells, such as neurons and GFAP (+) astrocytes showed less Bcl-2 immunoreaction.These findings suggest that in EAE, Bcl-2 expression in the CNS host cells decreases with CNS inflammation, possibly progressing to cell death in some cases, while the survival of host cells, including neurons, astrocytes, and some inflammatory cells, is associated with activation of the anti-apoptotic molecule Bcl-2. Taking all into considerations, its is postulated that Bcl-2 either beneficially or detrimentally functions in some host cells depending on the activation stage of each cell type.
Animals
;
Blotting, Western
;
DNA Fragmentation/physiology
;
Encephalomyelitis, Autoimmune, Experimental/*metabolism/pathology
;
Female
;
Immunohistochemistry
;
In Situ Nick-End Labeling
;
Male
;
Proto-Oncogene Proteins c-bcl-2/*metabolism
;
Rats
;
Rats, Inbred Lew
;
Spinal Cord/*metabolism
6.Dynamic changes of heme oxygenase-1 protein and mRNA in the brains of rats with experimental allergic encephalomyelitis.
Guo-Jun TAN ; Yi-Fei ZHU ; Cui-Fang CAO ; Xiao-Yun ZHAO ; Chang-Sheng MA ; Tian-Zhu YANG
Acta Physiologica Sinica 2004;56(5):579-584
In order to investigate the role of heme oxygenase-1 (HO-1) in the molecular mechanism of experimental allergic encephalomyelitis (EAE), which was induced by guinea pig spinal cord homogenate + complete freund adjuvant on Wistar rats, we observed the gene of HO-1 and its protein expression with reverse transcriptase polymerase chain reaction(RT-PCR) and immunohistochemistry 1, 7, 14, and 21 d after EAE induction in rats. The relationship between HO-1 and the symptoms of EAE was also observed. The results showed that the levels of HO-1 mRNA and its protein expression were very low in the brains of the control group, whereas they were enhanced gradually with pathological course in the brain and onsets of symptoms, signs of EAE. On day 7, the level of HO-1 mRNA reached the peak, but the expression level of HO-1 protein in the brains reached the peak on day 14. The immunoreactive cells of HO-1 were mainly located at the choroid plexuses and subfornical organ (SFO), as well as in regions around the "sleeve-like" lesion foci, all of which were coincident with the locations of lesions of EAE. The levels of HO-1 mRNA and its protein expression were lowered gradually on day 21, which were in parallel with the severities of symptoms and signs of EAE. After a specific inhibitor of HO-1, Snpp-9, was applied, both of the symptoms and pathological lesions of EAE in the rat brains were mitigated markedly. Therefore, these results may suggest that the dynamic changes of HO-1 mRNA and its protein expression are in parallel with the changes of symptoms and pathological lesions of EAE in the brain. In conclusion, the levels of HO-1 mRNA and its protein expression in brains may play an important role in the pathogenesis of EAE, and application of inhibitors of HO-1 may be one of the potential therapeutic ways for the prevention and treatment of EAE.
Animals
;
Brain
;
enzymology
;
metabolism
;
Encephalomyelitis, Autoimmune, Experimental
;
enzymology
;
genetics
;
physiopathology
;
Female
;
Heme Oxygenase (Decyclizing)
;
biosynthesis
;
genetics
;
Heme Oxygenase-1
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Rats
;
Rats, Wistar
;
Subfornical Organ
;
metabolism
;
pathology
7.Effect of Bushen Yisui Capsule () on oligodendrocyte lineage genes 1 and 2 in mice with experimental autoimmune encephalomyelitis.
Tao YANG ; Qi ZHENG ; Hui ZHAO ; Qiu-Xia ZHANG ; Ming LI ; Fang QI ; Kang-Ning LI ; Ling FANG ; Lei WANG ; Yong-Ping FAN
Chinese journal of integrative medicine 2016;22(12):932-940
OBJECTIVETo study the effects of Bushen Yisui Capsule (, BSYSC) on the oligodendrocyte lineage genes (Olig) 1 and Olig2 in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE) in order to explore the remyelination effect of BSYSC.
METHODSThe mice were randomly divided into normal control (NC), EAE model (EAE-M), prednisone acetate (PA, 6 mg/kg), BSYSC high-dose (3.02 g/kg) and BSYSC low-dose (1.51 g/kg) groups. The mice were induced by immunization with myelin oligodendrocyte glycoprotein (MOG) 35-55. The neurological function scores were assessed once daily. The pathological changes in mice brains were observed with hematoxylin-eosin (HE) staining and transmission electron microscope (TEM). The protein expressions of myelin basic protein (MBP), Olig1 and Olig2 in brains were measured by immunohistochemistry. The mRNA expressions of Olig1 and Olig 2 was also determined by quantitative real-time polymerase chain reaction.
RESULTSCompared with the EAE-M mice, (1) the neurological function scores were significantly decreased in BSYSC-treated mice on days 22 to 40 (P<0.01); (2) the inflammatory cells and demyelination in brains were reduced in BSYSC-treated EAE mice; (3) the protein expression of MBP was markedly increased in BSYSC-treated groups on day 18 and 40 respectively (P<0.05 or P<0.01); (4) the protein expression of Olig1 was increased in BSYSC (3.02 g/kg)-treated EAE mice on day 40 (P<0.01). Protein and mRNA expression of Olig2 was increased in BSYSC-treated EAE mice on day 18 and 40 (P<0.01).
CONCLUSIONThe effects of BSYSC on reducing demyelination and promoting remyelination might be associated with the increase of Olig1 and Olig2.
Animals ; Basic Helix-Loop-Helix Transcription Factors ; genetics ; metabolism ; Brain ; drug effects ; pathology ; ultrastructure ; Bromodeoxyuridine ; metabolism ; Capsules ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; genetics ; pathology ; physiopathology ; Female ; Fluorescent Antibody Technique ; Mice, Inbred C57BL ; Myelin-Oligodendrocyte Glycoprotein ; metabolism ; Nerve Tissue Proteins ; genetics ; metabolism ; Oligodendrocyte Transcription Factor 2 ; RNA, Messenger ; genetics ; metabolism
8.Characterization of proteolipid protein-peptide-specific CD(4)(+) T cell of experimental allergic encephalomyelitis in Biozzi AB/H mice.
Chinese Medical Journal 2002;115(4):521-524
OBJECTIVETo detect the function of proteolipid protein (PLP) peptide (residues 56 - 70)-specific CD(4)(+) T cells in experimental allergic encephalomyelitis (EAE) in Biozzi AB/H mice (H-2A(g7)).
METHODSBiozzi AB/H mice were immunized by synthetic PLP(56 - 70) peptide (DYEYLINVIHAFQYV) which was emulsified by sonication with complete Freund's adjuvant, a EAE model proven histologically and clinically. Murine splenocytes and spinal cord infiltrated (SCI) T cells were stimulated by PLP(56 - 70), then the CD(4)(+) T cells were isolated by Dynabeads, and confirmed by staining with anti-CD(4) antibody. Finally, the IL2 bioassay and IFN-gamma/IL4 ELISA were done to detect T cell proliferation and cytokine secretion after PLP(56 - 70) stimulation.
RESULTSThe histology of murine spinal cord showed a great number of lymphocytes infiltrated the spinal cord; the clinical signs showed high scores (4.3) on the peak, as well as a good EAE model. After being isolated by Dynabeads, CD(4)(+) T cells showed high purification (> 99%) by staining with anti-CD(4) antibody. IL2 bioassay showed that those T cells were PLP(56 - 70)-specific T cells. ELISA showed that those T cells had high IFN-gamma/IL4 ratio, indicating that they are T helper 1 (Th1) cells.
CONCLUSIONSPLP(56 - 70)-specific splenocytes and SCI CD(4)(+) T cells in EAE from Biozzi AB/H mice were detected and showed that both of them were PLP(56 - 70)-specific Th1 cells. It is beneficial to understand what kind of role these T cells play in the development of EAE.
Amino Acid Sequence ; Animals ; CD4-Positive T-Lymphocytes ; drug effects ; immunology ; metabolism ; Cell Line ; Encephalomyelitis, Autoimmune, Experimental ; immunology ; pathology ; Interferon-gamma ; metabolism ; Interleukin-2 ; metabolism ; Interleukin-4 ; metabolism ; Mice ; Mice, Inbred Strains ; Molecular Sequence Data ; Myelin Proteolipid Protein ; chemistry ; immunology ; Peptide Fragments ; administration & dosage ; immunology ; Spleen ; cytology ; immunology ; metabolism ; Th1 Cells ; drug effects ; immunology ; metabolism
9.Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells.
Qing WANG ; Yang-Yang CHEN ; Zhi-Chao YANG ; Hai-Jun YUAN ; Yi-Wei DONG ; Qiang MIAO ; Yan-Qing LI ; Jing WANG ; Jie-Zhong YU ; Bao-Guo XIAO ; Cun-Gen MA
Chinese journal of integrative medicine 2023;29(5):394-404
OBJECTIVE:
To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action.
METHODS:
This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively.
RESULTS:
GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05).
CONCLUSION
GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Mice
;
Animals
;
Encephalomyelitis, Autoimmune, Experimental/pathology*
;
Grape Seed Extract/therapeutic use*
;
Interleukin-17
;
Interleukin-1beta
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Th1 Cells
;
Mice, Inbred C57BL
;
Interferon-gamma/therapeutic use*
;
Th17 Cells/metabolism*
;
Interleukin-12/therapeutic use*
;
Cytokines/metabolism*
10.An expression plasmid encoding recombinant immunotoxin IP10-DT390 suppresses the experimental autoimmune encephalomyelitis.
Wenjie CHEN ; Hong LI ; Yi JIA ; Mingyan LI ; Zhonghua JIANG ; Meili LÜ ; Lin ZHANG
Journal of Biomedical Engineering 2007;24(5):1118-1122
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system (CNS); it serves as a model for the human multiple sclerosis (MS). In mice, EAE is mediated by T cells specific for various myelin basic proteins which migrate from the periphery to the CNS. In search of a way to prevent the induction and progression of EAE, we observed the effects of recombinant immunotoxin IP10-DT390 on blocking or eliminating the active T cells in the EAE model. In this paper is presented an experimental gene therapy-based model in which the mice were made resistant to EAE induction by plasmid DNA encoding recombinant immunotoxin that was injected into the leg muscles of mice. The new immuno-biological construct could selectively impair autoreactive T-cell homing while the duration of clinical signs is shorter, and the new construct would not affect other components of the immune response. These data demonstrated the effectiveness of the constructs in the treatment of EAE and suggested its usefulness in the treatment of other autoimmune diseases.
Animals
;
Chemokine CXCL10
;
biosynthesis
;
genetics
;
therapeutic use
;
Diphtheria Toxin
;
biosynthesis
;
genetics
;
therapeutic use
;
Encephalomyelitis, Autoimmune, Experimental
;
immunology
;
pathology
;
therapy
;
Female
;
Genetic Therapy
;
Immunoglobulin Fragments
;
biosynthesis
;
genetics
;
therapeutic use
;
Immunotoxins
;
genetics
;
metabolism
;
therapeutic use
;
Mice
;
Mice, Inbred C57BL
;
Receptors, CXCR3
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
therapeutic use
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
therapeutic use
;
T-Lymphocytes
;
immunology
;
Transfection