1.Utilization of central disk of blastoderm and germinal crescent region for production of interspecific germline chimera between chicken and quail.
Tomoki SOH ; Yoshie INOUE ; Yong-Mei XI ; Yukio KATO ; Masa-Aki HATTORI
Asian Journal of Andrology 2002;4(2):83-86
AIMThe production of interspecific germline chimeras between chicken and quail were attempted employing the dissociated cells derived from the blastodermal central disk (stage X) and the germinal crescent region of embryo (stage 7-8).
METHODSThe central disk (CD) of the area pellucida in chicken blastoderm (stage X) and the germinal crescent region (GCR) of embryo (stage 7-8) were dispersed and injected into the subgerminal cavity of quail blastoderm (stage X). Injected eggs were incubated for 7 days or to hatching. The donor chicken DNA was detected by the polymerase chain reaction.
RESULTSIn day-7 embryos, chicken DNA was detected in 5 gonads and 9 brains from 53 survived embryos received chicken CD cells, and 1 gonads and 6 brains from 27 survived embryos received chicken GCR. Chicken DNA was also detected from the semen of one adult male hatched from eggs received chicken GCR cells.
CONCLUSIONCD and GCR cells as the donors showed the possibility to produce the interspecific germline chimera, but further studies are needed to make necessary improvement.
Animals ; Base Sequence ; Blastoderm ; physiology ; ultrastructure ; Brain ; embryology ; Brain Chemistry ; Chick Embryo ; physiology ; Chickens ; Chimera ; DNA Primers ; DNA, Complementary ; genetics ; Embryo, Nonmammalian ; physiology ; Female ; Germ-Line Mutation ; physiology ; Male ; Ovalbumin ; genetics ; Ovary ; embryology ; Polymerase Chain Reaction ; Quail ; Testis ; embryology
3.Developmental effects of TCIPP and TnBP on zebrafish (Danio rerio) embryos.
Shu Yi ZHANG ; Shao Ping ZHANG ; Zi Jin SHAO ; Yuan Zheng FU ; Wen GU ; Hong ZHI ; Jian KONG ; Fu Chang DENG ; Wen Yan YAN ; Juan LIU ; Chao WANG ; Song TANG
Chinese Journal of Preventive Medicine 2023;57(5):693-700
Objective: To investigate the toxicity of tris (2-chloropropyl) phosphate (TCIPP) and tributyl phosphate (TnBP) on the growth and development of zebrafish embryos, as well as to explore the underlying mechanisms at the transcriptional level. Methods: With zebrafish as a model, two hpf zebrafish embryos were exposed to TCIPP and TnBP (0.1, 1, 10, 100, 500, and 1 000 μmol/L) using the semi-static method, and their rates of lethality and hatchability were determined. The transcriptome changes of 120 hpf juvenile zebrafish exposed to environmentally relevant concentrations of 0.1 and 1 μmol/L were measured. Results: The 50% lethal concentrations (LC50) of TCIPP and TnBP for zebrafish embryos were 155.30 and 27.62 μmol/L (96 hpf), 156.5 and 26.05 μmol/L (120 hpf), respectively. The 72 hpf hatching rates of TCIPP (100 μmol/L) and TnBP (10 μmol/L) were (23.33±7.72)% and (91.67±2.97)%, which were significantly decreased compared with the control group (P<0.05). Transcriptome analysis showed that TnBP had more differential genes (DEGs) than TCIPP, with a dose-response relationship. These DEGs were enriched in 32 pathways in total, including those involved in oxidative stress, energy metabolism, lipid metabolism, and nuclear receptor-related pathways, using the IPA pathway analysis. Among them, three enriched pathways overlapped between TCIPP and TnBP, including TR/RXR activation and CAR/RXR activation. Additionally, DEGs were also mapped onto pathways of LXR/RXR activation and oxidative stress for TnBP exposure only. Conclusion: Both TCIPP and TnBP have growth and developmental toxicities in zebrafish embryos, with distinct biomolecular mechanisms, and TnBP has a stronger effect than TCIPP.
Animals
;
Zebrafish/metabolism*
;
Embryo, Nonmammalian/metabolism*
;
Transcriptome
;
Oxidative Stress
;
Water Pollutants, Chemical/metabolism*
4.Effects of Disinfectants on Larval Development of Ascaris suum Eggs.
Ki Seok OH ; Geon Tae KIM ; Kyu Sung AHN ; Sung Shik SHIN
The Korean Journal of Parasitology 2016;54(1):103-107
The objective of this study was to evaluate the effects of several different commercial disinfectants on the embryogenic development of Ascaris suum eggs. A 1-ml aliquot of each disinfectant was mixed with approximately 40,000 decorticated or intact A. suum eggs in sterile tubes. After each treatment time (at 0.5, 1, 5, 10, 30, and 60 min), disinfectants were washed away, and egg suspensions were incubated at 25℃ in distilled water for development of larvae inside. At 3 weeks of incubation after exposure, ethanol, methanol, and chlorohexidin treatments did not affect the larval development of A. suum eggs, regardless of their concentration and treatment time. Among disinfectants tested in this study, 3% cresol, 0.2% sodium hypochlorite and 0.02% sodium hypochlorite delayed but not inactivated the embryonation of decorticated eggs at 3 weeks of incubation, because at 6 weeks of incubation, undeveloped eggs completed embryonation regardless of exposure time, except for 10% povidone iodine. When the albumin layer of A. suum eggs remained intact, however, even the 10% povidone iodine solution took at least 5 min to reasonably inactivate most eggs, but never completely kill them with even 60 min of exposure. This study demonstrated that the treatment of A. suum eggs with many commercially available disinfectants does not affect the embryonation. Although some disinfectants may delay or stop the embryonation of A. suum eggs, they can hardly kill them completely.
Animals
;
Ascaris suum/*drug effects
;
Disinfectants/*toxicity
;
Embryo, Nonmammalian/drug effects
;
Embryonic Development/*drug effects
;
Time Factors
5.Expression of gene in wild type zebrafish embryos of early development.
Haixiong XIA ; Li LI ; Yanhua ZHOU ; Pingping REN ; Zhixu HE ; Liping SHU
Journal of Zhejiang University. Medical sciences 2018;47(1):57-63
OBJECTIVE:
: To observe the expression of gene in the early development stage of wild zebrafish embryos.
METHODS:
: The collinearity of gene and the sequence similarity of G6pd protein were analyzed with gene database and BLAST software, respectively. Expression of gene in different development stages of zebrafish embryos was detected by hybridization. The -EGFP-pCS recombinant plasmids were microinjected into zebrafish embryos, and fluorescence was observed under a fluorescence microscope. The expression of G6pd protein at 24, 48 and 72 hour post fertilization (hpf) zebrafish embryos was detected by Western blotting; the enzyme activity of G6pd at 24, 48 and 72 hpf zebrafish embryos was detected by modified G6pd quantitative ratio method.
RESULTS:
: The G6pd protein similarity of zebrafish and human was 88%, and that of zebrafish and mouse was 87%. The results of hybridization showed that the gene was mainly expressed in the hematopoietic tissues of zebrafish; the results observed after microinjection of -EGFP-pCS recombinant plasmid were consistent with the results of hybridization. At 24, 48 and 72 hpf, the relative expression levels of G6pd protein in zebrafish embryos were 1.44±0.03, 1.47±0.05, and 1.54±0.02, respectively(>0.05); the G6pd enzyme activity levels were 1.74±0.17, 1.75±0.12, 1.71±0.22, respectively (>0.05).
CONCLUSIONS
: The study has observed the expression of gene and G6pd protein, and G6pd enzyme activity in zebrafish embryos at different development phases, which provides a reference for the establishment of a zebrafish G6PD deficiency model.
Animals
;
Embryo, Nonmammalian
;
Gene Expression Regulation, Developmental
;
Glucosephosphate Dehydrogenase
;
genetics
;
Humans
;
In Situ Hybridization
;
Mice
;
Plasmids
;
genetics
;
Zebrafish
;
embryology
;
genetics
7.Toxicity of Graphene Quantum Dots in Zebrafish Embryo.
Zhen Guo WANG ; Rong ZHOU ; ; Dan JIANG ; Jing E SONG ; Qian XU ; Jing SI ; ; Yun Ping CHEN ; Xin ZHOU ; ; Lu GAN ; ; Jian Zhen LI ; Hong ZHANG ; ; Bin LIU
Biomedical and Environmental Sciences 2015;28(5):341-351
OBJECTIVETo evaluate the bio-safety of graphene quantum dots (GQDs), we studied its effects on the embryonic development of zebrafish.
METHODSIn vivo, biodistribution and the developmental toxicity of GQDs were investigated in embryonic zebrafish at exposure concentrations ranging from 12.5-200 μg/mL for 4-96 h post-fertilization (hpf). The mortality, hatch rate, malformation, heart rate, GQDs uptake, spontaneous movement, and larval behavior were examined.
RESULTSThe fluorescence of GQDs was mainly localized in the intestines and heart. As the exposure concentration increased, the hatch and heart rate decreased, accompanied by an increase in mortality. Exposure to a high level of GQDs (200 μg/mL) resulted in various embryonic malformations including pericardial edema, vitelline cyst, bent spine, and bent tail. The spontaneous movement significantly decreased after exposure to GQDs at concentrations of 50, 100, and 200 μg/mL. The larval behavior testing (visible light test) showed that the total swimming distance and speed decreased dose-dependently. Embryos exposed to 12.5 μg/mL showed hyperactivity while exposure to higher concentrations (25, 50, 100, and 200 μg/mL) caused remarkable hypoactivity in the light-dark test.
CONCLUSIONLow concentrations of GQDs were relatively non-toxic. However, GQDs disrupt the progression of embryonic development at concentrations exceeding 50 μg/mL.
Animals ; Behavior, Animal ; Dose-Response Relationship, Drug ; Embryo, Nonmammalian ; abnormalities ; drug effects ; Graphite ; administration & dosage ; chemistry ; toxicity ; Larva ; drug effects ; Quantum Dots ; administration & dosage ; chemistry ; toxicity ; Zebrafish ; embryology
8.Positional cloning of a novel allele of zebrafish cloche mutant.
Ning MA ; Zhong-jun HUO ; Guang YAN ; Hong-hui HUANG ; Shen-qiu LUO ; Wen-qing ZHANG
Journal of Southern Medical University 2010;30(3):458-462
OBJECTIVETo perform the genetic identification of cloche(172) mutant zebrafish.
METHODSThe chemical mutagen N-ethyl-N-nitrosourea (ENU) was used to treat the AB stain male fish. Large-scale forward genetic screening was carried out to search for lyC-deficient zebrafish mutant by WISH. The morphology changes of the embryos at 3 days postfertilization (3dpf) stage were observed and the cloche(172) gene was identified by mapping and complementation test.
RESULTSWe selected 4 lyC-deficient zebrafish by WISH. cloche(172) mutant showed morphological changes similar to cloche mutant in 3dpf stage. One fourth of the embryos showed cloche phenotype as found in complementation test, and the cloche(172) gene was mapped on the telomere of zebrafish 13 chromosome where cloche gene was located. Numerous red blood cells were observed in the cloche(172) mutant, while only a few cells were found in the cloche mutant in the tail region by o-dianisdine staining.
CONCLUSIONcloche(172) gene which is responsible for the phenotype of cloche mutant may be a novel point mutation allele of the cloche mutant.
Alleles ; Animals ; Chromosome Mapping ; Cloning, Molecular ; Embryo, Nonmammalian ; embryology ; metabolism ; Ethylnitrosourea ; toxicity ; Genetic Complementation Test ; Male ; Muramidase ; genetics ; Mutation ; Zebrafish ; embryology ; genetics ; Zebrafish Proteins ; genetics
9.Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.
Jing E SONG ; Jing SI ; ; Rong ZHOU ; ; Hua Peng LIU ; Zhen Guo WANG ; Lu GAN ; ; Fang GUI ; Bin LIU ; Hong ZHANG ;
Biomedical and Environmental Sciences 2016;29(6):453-456
The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity.
Animals
;
Carbon Monoxide
;
pharmacology
;
Cardiotonic Agents
;
toxicity
;
Dose-Response Relationship, Drug
;
Embryo, Nonmammalian
;
drug effects
;
Embryonic Development
;
drug effects
;
Organometallic Compounds
;
toxicity
;
Zebrafish
;
embryology
;
metabolism
10.Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.
Xiao Tong LIU ; Xi Yan MU ; Xiao Li WU ; Li Xuan MENG ; Wen Bi GUAN ; Yong Qiang MA ; Hua SUN ; Cheng Ju WANG ; Xue Feng LI
Biomedical and Environmental Sciences 2014;27(9):676-683
OBJECTIVEThis study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos.
METHODSThe 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated.
RESULTSStatistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials.
CONCLUSIONMWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.
Animals ; Embryo, Nonmammalian ; Embryonic Development ; drug effects ; Female ; Graphite ; toxicity ; Heart Rate ; drug effects ; Male ; Movement ; drug effects ; Nanotubes, Carbon ; toxicity ; Oxides ; toxicity ; Toxicity Tests ; Zebrafish