2.Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.
Jing E SONG ; Jing SI ; ; Rong ZHOU ; ; Hua Peng LIU ; Zhen Guo WANG ; Lu GAN ; ; Fang GUI ; Bin LIU ; Hong ZHANG ;
Biomedical and Environmental Sciences 2016;29(6):453-456
The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity.
Animals
;
Carbon Monoxide
;
pharmacology
;
Cardiotonic Agents
;
toxicity
;
Dose-Response Relationship, Drug
;
Embryo, Nonmammalian
;
drug effects
;
Embryonic Development
;
drug effects
;
Organometallic Compounds
;
toxicity
;
Zebrafish
;
embryology
;
metabolism
3.Study of the toxicity of 1-Bromo-3-chloro-5,5-dimethylhydantoin to zebrafish.
WanFang LI ; JinFeng WEI ; HongTao JIN ; MingFang HUANG ; JingXuan ZHANG ; ChengHe LI ; ChaoJie CHEN ; Chang LIU ; AiPing WANG
Biomedical and Environmental Sciences 2011;24(4):383-390
OBJECTIVE1-Bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is a solid oxidizing biocide for water disinfection. The objective of this study was to investigate the toxic effect of BCDMH on zebrafish.
METHODSThe developmental toxicity of BCDMH on zebrafish embryos and the dose-effect relationship was determined. The effect of BCDMH exposure on histopathology and tissue antioxidant activity of adult zebrafish were observed over time.
RESULTSExposure to 4 mg/L BCDMH post-fertilization was sufficient to induce a number of developmental malformations, such as edema, axial malformations, and reductions in heart rate and hatching rate. The no observable effects concentration of BCDMH on zebrafish embryo was 0.5 mg/L. After 96 h exposure, the 50% lethal concentration (95% confidence interval (CI)) of BCDMH on zebrafish embryo was 8.10 mg/L (6.15-11.16 mg/L). The 50% inhibitory concentration (95% CI) of BCDMH on hatching rate was 7.37 mg/L (6.33-8.35 mg/L). Histopathology showed two types of responses induced by BCDMH, defensive and compensatory. The extreme responses were marked hyperplasia of the gill epithelium with lamellar fusion and epidermal peeling. The histopathologic changes in the gills after 10 days exposure were accompanied by significantly higher catalase activity and lipid peroxidation.
CONCLUSIONThese results have important implications for studies on the toxicity and use of BCDMH and its analogs.
Animals ; Antioxidants ; metabolism ; Disinfectants ; toxicity ; Dose-Response Relationship, Drug ; Embryo, Nonmammalian ; drug effects ; Hydantoins ; toxicity ; Time Factors ; Water ; chemistry ; Water Pollutants, Chemical ; toxicity ; Zebrafish
4.Retinoic acid signal pathway regulation of zebra fish tooth development through manipulation of the differentiation of neural crest.
Xin LIU ; Xing HUANG ; Zhiyun XU ; Deqin YANG
West China Journal of Stomatology 2016;34(2):115-120
OBJECTIVETo investigate the mechanism of retinoic acid (RA) signal in dental evolution, RA is used to explore the influence of the mechanism on neural crest's migration during the early stage of zebra fish embryos.
METHODSWe divided embryos of wild type and transgenic line zebra fish into three groups. 1 x 10(-7) to 6 x 10(-7) mol x L(-1) RA and 1 x 10(-7) mo x L(-1) 4-diethylaminobenzaldehyde (DEAB) were added into egg water at 24 hpf for 9 h. Dimethyl sulfoxid (DMSO) with the concentration was used as control group. Then, antisense probes of dlx2a, dlx2b, and barxl were formulated to perform whole-mount in situ hybridization to check the expressions of the genes in 48 hpf to 72 hpf embryos. We observed fluorescence of transgenic line in 4 dpf embryos.
RESULTSWe obtained three mRNA probes successfully. Compared with DMSO control group, a low concentration (1 x 10(-7) mol x L(-1)) of RA could up-regulate the expression of mRNA (barx1, dlx2a) in neural crest. Obvious migration trend was observed toward the pharyngeal arch in which teeth adhered. Transgenic fish had spreading fluorescence tendency in pharyngeal arch. However, a high concentration (4 x 10(-7) mol x L(-1)) of RA malformed the embryos and killed them after treatment. One third of the embryos of middle concentration (3 x 10(-7) mo x L(-1)) exhibited delayed development. DEAB resulted in neural crest dysplasia. The expression of barxl and dlx2a were suppressed, and the appearance of dlx2b in tooth was delayed.
CONCLUSIONRA signal pathway can regulate the progenitors of tooth by controlling the growth of the neural crest and manipulating tooth development
Animals ; Branchial Region ; Cell Differentiation ; drug effects ; Embryo, Nonmammalian ; drug effects ; embryology ; metabolism ; In Situ Hybridization ; Neural Crest ; drug effects ; Odontogenesis ; Signal Transduction ; Tooth ; drug effects ; embryology ; metabolism ; Tretinoin ; pharmacology ; Zebrafish ; embryology ; genetics ; metabolism
5.Effect of external retinoic acid on Tbx1 gene during zebrafish embryogenesis.
Li-Feng ZHANG ; Yong-Hao GUI ; Tao ZHONG ; Yue-Xiang WANG ; Lin-Xi QIAN ; Yong-Xin DONG ; Qiu JIANG ; Shu-Na SUN ; Hou-Yan SONG
Chinese Journal of Pediatrics 2007;45(4):267-271
OBJECTIVEDiGeorge/del22q11 syndrome is one of the most common genetic causes of outflow tract and aortic arch defects in human. DiGeorge/del22q11 is thought to involve an embryonic defect restricted to the pharyngeal arches and the corresponding pharyngeal pouches. Previous studies have evidenced that retinoic acid (RA) signaling is definitely indispensable for the development of the pharyngeal arches. Tbx1, one of the T-box containing genes, is proved to be the most attractive candidate gene for DiGeorge/del22q11 syndrome. However, the interaction between RA and Tbx1 has not been fully investigated. Exploring the interaction will contribute to discover the molecular pathways disrupted in DiGeorge/del22q11 syndrome, and will also be essential for understanding genetic basis for congenital heart disease. It now seems possible that genes and molecular pathways disrupted in DiGeorge syndrome will also account for some isolated cases of congenital heart disease. Accordingly, the present study aimed to extensively study the effects of external RA on the cardiac development and Tbx1 expression during zebrafish embryogenesis.
METHODSThe chemical genetics approach was applied by treating zebrafish embryos with 5 x 10(-8) mol/L RA and 10(-7) mol/L RA at 12.5 hour post fertilization (hpf). The expression patterns of Tbx1 were monitored by whole-mount in situ hybridization and quantitative real-time RT-PCR, respectively.
RESULTSThe zebrafish embryos treated with 5 x 10(-8) mol/L RA and 10(-7) mol/L RA for 1.5 h at 12.5 hpf exhibited selective defects of abnormal heart tube. The results of whole-mount in situ hybridization with Tbx1 RNA probe showed that Tbx1 was expressed in cardiac region, pharyngeal arches and otic vesicle during zebrafish embryogenesis. RA treatment led to a distinct spatio-temporal expression pattern for Tbx1 from that in wild type embryo. The real-time PCR analysis showed that Tbx1 expression levels were markedly reduced by RA treatment. Tbx1 expression in the pharyngeal arches and heart were obviously down regulated compared to the wild type embryos. In contrast to 5 x 10(-8) mol/L RA-treated groups, 10(-7) mol/L RA caused a more severe effect on the Tbx1 expression level.
CONCLUSIONThese results suggested that there was a genetic link between RA and Tbx1 during development of zebrafish embryo. RA could produce an altered Tbx1 expression pattern in zebrafish. RA may regulate the Tbx1 expression in a dose-dependant manner. RA could represent a major epigenetic factor to cause abnormal expression of Tbx1, secondarily, disrupt the pharyngeal arch and heart development.
Animals ; Branchial Region ; drug effects ; embryology ; Embryo, Nonmammalian ; drug effects ; Embryonic Development ; drug effects ; Gene Expression Regulation, Developmental ; Heart ; drug effects ; embryology ; T-Box Domain Proteins ; genetics ; metabolism ; Tretinoin ; pharmacology ; Zebrafish ; embryology ; genetics ; Zebrafish Proteins ; genetics ; metabolism
6.Research progress of zebrafish used in drug metabolism.
Acta Pharmaceutica Sinica 2011;46(9):1026-1031
Zebrafish is widely used as a model organism in the process of drug discovery. It expresses drug metabolizing enzymes like cytochrome P450 (CYP450), uridine 5'-diphospho-glucuronosyltransferase (UGT) and nuclear receptors like pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), etc. This article summarized the profiles of main drug metabolizing enzymes and nuclear receptors, and reviewed the advances on xenobiotics metabolism in zebrafish.
Animals
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Embryo, Nonmammalian
;
drug effects
;
Glucuronosyltransferase
;
metabolism
;
Inactivation, Metabolic
;
Pharmaceutical Preparations
;
metabolism
;
Polychlorinated Dibenzodioxins
;
toxicity
;
Receptors, Aryl Hydrocarbon
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Receptors, Steroid
;
metabolism
;
Teratogens
;
toxicity
;
Xenobiotics
;
metabolism
;
Zebrafish
;
embryology
;
metabolism
7.Effect and mechanism of curcumol on angiogenesis activity of zebrafishes.
Lili TIAN ; Jianyong DONG ; Changjiang HUANG
China Journal of Chinese Materia Medica 2012;37(12):1822-1825
OBJECTIVETo conduct a preliminary study on the effect of curcumol in promoting angiogenesis activity and its mechanism in zebrafishes, in order to provide basis for clinical prescription.
METHODZebrafishes biological model was established to, observe curcumol's effect on embryo blood vessel growth, blood vessel regeneration of adult fishes after tail-cutting and tissue regeneration of fish fries after tail-cutting. The relative fluorescence quantitative PCR method was adopted to determine the gene expression of vascular endothelial growth factor (VEGFA) and receptor VEGFR2 of fish fries after tail-cutting.
RESULTCurcumol contributed to angiogenesis of intersegmental blood vessels in zebrafishes embryos and speed up regeneration of blood vessels in adult fishes after tail-cutting. Furthermore, curcumol can increase the gene expression of VEGFA and VEGFR2 in fish fries.
CONCLUSIONCurcumol can promote angiogenesis in zebrafishes, and enhance the gene expression of VEGFA and VEGFR2 in fish fries after tail-cutting and speed up the regeneration of their tails.
Animals ; Embryo, Nonmammalian ; blood supply ; drug effects ; metabolism ; Gene Expression Regulation ; drug effects ; Neovascularization, Physiologic ; drug effects ; Sesquiterpenes ; pharmacology ; Vascular Endothelial Growth Factor A ; genetics ; Vascular Endothelial Growth Factor Receptor-2 ; genetics ; Zebrafish ; embryology ; genetics ; physiology
8.Effects of Toluene on the Development of the Inner Ear and Lateral Line Sensory System of Zebrafish.
Xu Dong LI ; Hong Wei TU ; Ke Qi HU ; Yun Gang LIU ; Li Na MAO ; Feng Yan WANG ; Hong Ying QU ; Qing CHEN
Biomedical and Environmental Sciences 2021;34(2):110-118
Objective:
The aim of this study was to explore the ototoxicity of toluene in the early development of zebrafish embryos/larvae.
Methods:
Zebrafish were utilized to explore the ototoxicity of toluene. Locomotion analysis, immunofluorescence, and qPCR were used to understand the phenotypes and molecular mechanisms of toluene ototoxicity.
Results:
The results demonstrated that at 2 mmol/L, toluene induced zebrafish larvae death at 120 hours post fertilization (hpf) at a rate of 25.79% and inhibited the rate of hatching at 72 hpf. Furthermore, toluene exposure inhibited the distance travelled and average swimming velocity of zebrafish larvae while increasing the frequency of movements. As shown by fluorescence staining of hair cells, toluene inhibited the formation of lateral line neuromasts and middle line 1 (Ml
Conclusion
This study indicated that toluene may affect the development of both the inner ear and lateral line systems in zebrafish, while the lateral line system may be more sensitive to toluene than the inner ear.
Animals
;
Ear, Inner/growth & development*
;
Embryo, Nonmammalian/drug effects*
;
Gene Expression Regulation, Developmental/drug effects*
;
Hair Cells, Auditory/metabolism*
;
Lateral Line System/growth & development*
;
Locomotion/drug effects*
;
Ototoxicity/physiopathology*
;
Toluene/toxicity*
;
Zebrafish
9.Lidamycin inhibits angiogenesis of zebrafish embryo via down-regulation of VEGF.
Li-li DING ; Ming LIU ; Sheng-hua ZHANG ; Xiang-zhong ZHAO ; Ning WU ; Lei CHEN ; Guang-jian WANG ; Xiu-kun LIN
Acta Pharmaceutica Sinica 2010;45(4):456-461
Lidamycin (LDM) is a potent antitumor antibiotic. Previous studies have shown that LDM could inhibit proliferation and migration in endothelial cells. In the present report, the effect of LDM on angiogenesis of zebrafish embryo was studied. The results showed that treatment of zebrafish embryos with LDM resulted in significant inhibition of angiogenesis. Morphological observation, quantitative endogenous alkaline phosphatase (EAP) assay, alkaline phosphatase staining, and transgenic zebrafish assay were performed to evaluate vascular development defects in zebrafish. The results indicated that after the zebrafish embryos were exposed to LDM, angiogenesis defects of zebrafish embryos were observed, including pericardial edema, reduced numbers of circulating red blood cells, suppression of zebrafish vessel growth, and absences of SIV (subintestinal vein). The expression of VEGF was detected by RT-PCR assay, quantitative reverse transcriptase real-time PCR (qRT-PCR) assay and Western blotting analysis. The results revealed that LDM could inhibit the expression of VEGF protein, while the expression of mRNA was not significantly affected. The study suggests that LDM could inhibit the zebrafish embryo angiogenesis by down-regulation ofVEGF expression.
Aminoglycosides
;
pharmacology
;
Animals
;
Animals, Genetically Modified
;
embryology
;
genetics
;
physiology
;
Antibiotics, Antineoplastic
;
pharmacology
;
Down-Regulation
;
Embryo, Nonmammalian
;
drug effects
;
Enediynes
;
pharmacology
;
Neovascularization, Physiologic
;
drug effects
;
genetics
;
RNA, Messenger
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism
;
Zebrafish
;
embryology
;
genetics
;
physiology
10.Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions.
Ying Xiao FU ; Jian Hong GU ; Yi Ran ZHANG ; Xi Shuai TONG ; Hong Yan ZHAO ; Yan YUAN ; Xue Zhong LIU ; Jian Chun BIAN ; Zong Ping LIU
Journal of Veterinary Science 2013;14(4):405-412
The purpose of this study was to determine whether osteoprotegerin (OPG) could affect osteoclat differentiation and activation under serum-free conditions. Both duck embryo bone marrow cells and RAW264.7 cells were incubated with macrophage colony stimulatory factor (M-CSF) and receptor activator for nuclear factor kappaB ligand (RANKL) in serum-free medium to promote osteoclastogenesis. During cultivation, 0, 10, 20, 50, and 100 ng/mL OPG were added to various groups of cells. Osteoclast differentiation and activation were monitored via tartrate-resistant acid phosphatase (TRAP) staining, filamentous-actin rings analysis, and a bone resorption assay. Furthermore, the expression osteoclast-related genes, such as TRAP and receptor activator for nuclear factor kappaB (RANK), that was influenced by OPG in RAW264.7 cells was examined using real-time polymerase chain reaction. In summary, findings from the present study suggested that M-CSF with RANKL can promote osteoclast differentiation and activation, and enhance the expression of TRAP and RANK mRNA in osteoclasts. In contrast, OPG inhibited these activities under serum-free conditions.
Acid Phosphatase/genetics/metabolism
;
Animals
;
Avian Proteins/*pharmacology
;
Bone Marrow Cells/drug effects/*metabolism
;
Cells, Cultured
;
Ducks
;
Embryo, Nonmammalian/drug effects/metabolism
;
Isoenzymes/genetics/metabolism
;
Macrophage Colony-Stimulating Factor/metabolism
;
Osteoclasts/cytology/*drug effects/*metabolism
;
Osteoprotegerin/*pharmacology
;
RANK Ligand/metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptor Activator of Nuclear Factor-kappa B/genetics/metabolism