1.Bone generation in the reconstruction of a critical size calvarial defect in an experimental model.
Yong-Chen POR ; Carlos Raul BARCELÓ ; Kenneth E SALYER ; David G GENECOV ; Karen TROXEL ; El GENDLER ; Mohammed E ELSALANTY ; Lynne A OPPERMAN
Annals of the Academy of Medicine, Singapore 2007;36(11):911-919
OBJECTIVEThis study was designed to investigate the optimal combination of known osteogenic biomaterials with shape conforming struts to achieve calvarial vault reconstruction, using a canine model.
METHODSEighteen adolescent beagles were divided equally into 6 groups. A critical size defect of 6 x 2 cm traversed the sagittal suture. The biomaterials used for calvarial reconstruction were demineralised perforated bone matrix (DBM), recombinant human bone morphogenetic protein-2 (rhBMP2) and autogenous platelet-rich plasma (PRP). The struts used were cobalt chrome (metal) or resorbable plate. The groupings were as follows: 1) DBM + metal, 2) DBM + PRP + metal, 3) DBM + PRP + resorbable plate, 4) DBM + rhBMP2 + metal, 5) DBM + rhBMP2 + PRP + metal, and 6) DBM + rhBMP2 + resorbable plate. Animals were euthanised at 3 months post-surgery. There was no mortality or major complications. Analysis was performed macroscopically, histologically, and with computed tomography (CT).
RESULTSThere was complete bony regeneration in the rhBMP2 groups only. Non-rhBMP2 groups had minimal bony ingrowth from the defect edges and on the dural surface, a finding confirmed by CT scan and histology. PRP did not enhance bone regeneration. Shape conformation was good with both metal and resorbable plate.
CONCLUSIONrhBMP2 but not PRP accelerated calvarial regeneration in 3 months. The DBM in the rhBMP2 groups were substituted by new trabecular bone. Shape molding was good with both metal and resorbable plate.
Animals ; Biocompatible Materials ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins ; pharmacology ; Bone Regeneration ; physiology ; Dogs ; Models, Animal ; Postoperative Care ; Recombinant Proteins ; pharmacology ; Reconstructive Surgical Procedures ; Skull ; growth & development ; pathology ; surgery ; Transforming Growth Factor beta ; pharmacology