1.Whole exome sequencing and analysis of hypohidrotic ectodermal dysplasia patients.
Xing Yu LIU ; Jun Xia ZHU ; Yu Ming ZHAO
Chinese Journal of Stomatology 2022;57(2):155-161
Objective: To detect gene mutation in patients with hypohidrotic ectodermal dysplasia (HED) by using whole exome sequencing, to analyze the pathogenicity of the mutations, and to provide reference for the genetic diagnosis of HED patients. Methods: Peripheral blood genomic DNA was extracted from each of the HED patients and their family members collected in Peking University School and Hospital of Stomatology from August 2016 to August 2021. Whole exome sequencing and sanger sequencing were performed to detect gene mutations. Functions of the rare variants after the database filtering were analyzed by bioinformatics tools. Results: Three reported mutations of ectodysplasin A (EDA) gene (c.2T>C, c.161A>G, c.467G>A) and a mutation of ectodysplasin A receptor (EDAR) gene (c.871G>A) were detected by whole genome sequencing in four HED patients, and were verified by Sanger sequencing in four HED families. The EDAR gene mutation founded in this research was reported in HED patients for the first time. Bioinformatics tools predicted that the mutations of EDA gene detected in this study were highly species conserved and disease-causing. The combined annotation dependent depletion (CADD) scores of EDA gene mutations c.2T>C, c.161A>G and c.467G>A were 22.5, 26.3 and 25.5 respectively, and the genomic evolutionary rate profiling (GERP) scores were 2.16, 2.26 and 2.18 respectively. The EDAR gene mutation c.871G>A detected in this study was species conserved and possibly disease-causing. The CADD and GERP scores of EDAR gene mutation c.871G>A were 22.0 and 1.93 respectively. Conclusions: Three reported mutations of EDA gene and a previously unreported mutation of EDAR gene were detected in four HED families. Different mutations of EDA gene and EDAR gene could make different influence on the protein function and lead to the occurrence of HED.
Ectodermal Dysplasia/genetics*
;
Ectodermal Dysplasia 1, Anhidrotic/genetics*
;
Edar Receptor/genetics*
;
Humans
;
Mutation
;
Pedigree
;
Whole Exome Sequencing