1.Research progress in neurophysiological mechanism underlying distinguishing plants through classification of echoes in frequency modulation bats.
Qing SHI ; Zi-Ying FU ; Qi-Cai CHEN
Acta Physiologica Sinica 2015;67(2):134-142
By using echolocation system echolocating bats have the ability to complete the tasks of detection, localization and classification of the targets. Among the three fundamental tasks, the study of how bats use echolocation to classify targets was investigated later, and most of previous studies were focused on the analysis of simple targets. However, the echoes that bats received are mostly returning from complex objects or structures, which are so complex that they must be described by stochastic statistical approach. In recent years, the study on classification of complex echoes returning from different plants in frequency modulation (FM) bats has made significant progress. In this review article, we will briefly introduce and comment on some progress of studies based on the behavioral evidence, acoustic cues, relevant classification models, and neural bases underlying different classification cues to distinguish plants through classification of echoes in FM bats.
Animals
;
Chiroptera
;
physiology
;
Echolocation
;
Nervous System Physiological Phenomena
2.The role of the ventral nucleus of the lateral lemniscus in sound signal processing and auditory ascending transmission.
Hui-Hua LIU ; Feng LUO ; Xin WANG
Acta Physiologica Sinica 2014;66(3):358-364
The ventral nucleus of the lateral lemniscus (VNLL) is an important nucleus in the central auditory pathway which connects the lower brainstem and the midbrain inferior colliculus (IC). Previous studies have demonstrated that neurons in the VNLL could respond to sound signal parameters. Frequency tuning curves (FTCs) of VNLL neurons are generally wider than FTCs of IC neurons, suggesting that the VNLL does not enhance abilities of frequency discrimination and coding. Two types of rate-intensity functions (RIFs) are found in the VNLL: monotonic and non-monotonic RIFs. Intensity-tuning of VNLL neurons are affected by the temporal firing patterns during processing and encoding intensity. There are multiple temporal firing patterns in VNLL neurons. Onset pattern has a precise timing characteristic which is well suited to encode temporal features of stimuli, and also very important to animal behavior including bat's echolocation. The VNLL accepts inputs from lower nuclei, uploads glycine inhibitory outputs to IC, and modulates response characteristics generating and acoustic signal processing of IC neurons. Recent research suggests that fast inhibitory projection from the VNLL may delay the first spike latency of IC neurons, and the delayed inhibitory projection from the VNLL may mediate the temporal firing patterns of IC neurons. But how inhibitory inputs from the VNLL integrate in IC, and how inhibitory inputs from the VNLL enhance the ability of detecting sound signal of IC neurons are not very clear and need more direct evidence at the level of neurons. These questions will help further understand the role of upload during IC processes acoustic signal, which are our research target in the future. This article reviews the current literature regarding the roles of the VNLL in sound signal processing and the auditory ascending transmission, including advances in the relevant research in our laboratory.
Acoustic Stimulation
;
Animals
;
Auditory Pathways
;
Chiroptera
;
Echolocation
;
Neurons
;
physiology
;
Pons
;
cytology
3.GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats.
Rui-Hong LUAN ; Fei-Jian WU ; Philip H-S JEN ; Xin-De SUN
Acta Physiologica Sinica 2007;59(6):805-813
The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain. By means of iontophoretic application of bicuculline, the effect of GABAergic inhibition on the intensity sensitivity of IC neurons responding to three different PRRs of 10, 30 and 90 pulses per second (pps) was examined. The rate-intensity functions (RIFs) were acquired. The dynamic range (DR) of RIFs was considered as a criterion of intensity sensitivity. Comparing the average DR of RIFs at different PRRs, we found that the intensity sensitivity of some neurons improved, but that of other neurons decayed when repetition rate of stimulus trains increased from 10 to 30 and 90 pps. During application of bicuculline, the number of impulses responding to the different pulse trains increased under all stimulating conditions, while the DR differences of RIFs at different PRRs were abolished. The results indicate that GABAergic inhibition was involved in modulating the intensity sensitivity of IC neurons responding to pulse trains at different PRRs. Before and during bicuculline application, the percentage of changes in responses was maximal in lower stimulus intensity near to the minimum threshold (MT), and decreased gradually with the increment of stimulus intensity. This observation suggests that GABAergic inhibition contributes more effectively to the intensity sensitivity of the IC neurons responding to pulse trains at lower sound level.
Acoustic Stimulation
;
Animals
;
Bicuculline
;
pharmacology
;
Chiroptera
;
Echolocation
;
Electrophysiological Phenomena
;
GABA-A Receptor Antagonists
;
pharmacology
;
Inferior Colliculi
;
cytology
;
Neurons
;
cytology
4.Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger.
Jia TANG ; Zi-Ying FU ; Fei-Jian WU
Acta Physiologica Sinica 2010;62(5):469-477
The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55). All these results suggest that the CF and FM components in echolocation signal of CF-FM bats play different roles during bats' hunting and preying on. The FM component of CF-FM signal presenting in the terminal phase can increase the number of F type neurons and decrease the recovery cycles of IC neurons for processing high repetition echo information, which ensures the bat to analyze the target range and surface texture more accurately.
Acoustic Stimulation
;
methods
;
Action Potentials
;
physiology
;
Animals
;
Chiroptera
;
physiology
;
Echolocation
;
physiology
;
Female
;
Inferior Colliculi
;
cytology
;
physiology
;
Male
;
Neurons
;
classification
;
physiology
;
Refractory Period, Electrophysiological
;
physiology
5.Perception and selectivity of sound duration in the central auditory midbrain.
Xin WANG ; An-An LI ; Fei-Jian WU
Acta Physiologica Sinica 2010;62(4):309-316
Sound duration plays important role in acoustic communication. Information of acoustic signal is mainly encoded in the amplitude and frequency spectrum of different durations. Duration selective neurons exist in the central auditory system including inferior colliculus (IC) of frog, bat, mouse and chinchilla, etc., and they are important in signal recognition and feature detection. Two generally accepted models, which are "coincidence detector model" and "anti-coincidence detector model", have been raised to explain the mechanism of neural selective responses to sound durations based on the study of IC neurons in bats. Although they are different in details, they both emphasize the importance of synaptic integration of excitatory and inhibitory inputs, and are able to explain the responses of most duration-selective neurons. However, both of the hypotheses need to be improved since other sound parameters, such as spectral pattern, amplitude and repetition rate, could affect the duration selectivity of the neurons. The dynamic changes of sound parameters are believed to enable the animal to effectively perform recognition of behavior related acoustic signals. Under free field sound stimulation, we analyzed the neural responses in the IC and auditory cortex of mouse and bat to sounds with different duration, frequency and amplitude, using intracellular or extracellular recording techniques. Based on our work and previous studies, this article reviews the properties of duration selectivity in central auditory system and discusses the mechanisms of duration selectivity and the effect of other sound parameters on the duration coding of auditory neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception
;
physiology
;
Echolocation
;
physiology
;
Evoked Potentials, Auditory
;
physiology
;
Humans
;
Inferior Colliculi
;
physiology
;
Mesencephalon
;
physiology
;
Sound Localization
;
physiology
;
Time Perception
;
physiology
6.Effects of backward masking on the responses of the inferior collicular neurons in the big brown bat, Eptesicus fuscus.
Rui-Hong LUAN ; Fei-Jian WU ; Philip H S JEN ; Xin-De SUN
Acta Physiologica Sinica 2005;57(2):225-232
Temporal features of sound convey information vital for behaviors as diverse as speech recognition by human and echolocation by bats. However, auditory stimuli presented in temporal proximity might interfere with each other. Although much progress has been made in the description of this phenomenon from psychophysical studies, the neural mechanism responsible for its formation at central auditory structures especially at the inferior colliculus (IC), a midbrain auditory nucleus which practically receives massive bilateral projections from all the major auditory structures in the brainstem, remains unclear. This study was designed to investigate it in vivo by using electrophysiological recording from the inferior collicular neurons of the big brown bat, Eptesicus fuscus. In our results, the responses of 12 (38%, n= 31) neurons to the test sound (leading sound) were obviously inhibited by the masker (lagging sound). The inhibitory effects in these neurons were correlated with the inter-stimulus level difference (SLD) and the inter-stimulus onset asynchrony (SOA) interval. The strength of backward masking increased with the masker intensity increasing, the test sound intensity decreasing and the SOA interval shortening. There were no obvious effects of backward masking on the responses of many other neurons (52%, 16/31), and yet in a part of these neurons, the neural inhibition of responses to the test sound was observed at the special SLD and the special SOA intervals. Moreover, few of the 31 sampled IC neurons (10%, 3/31) displayed facilitating responses to the test sound at the special SLD and the special SOA intervals. These data demonstrate that a lot of IC neurons are involved in the generation of the backward masking of acoustical perception. It is conjectured that the temporal dynamic integration between the leading inhibitory inputs evoked by the masker sound and the excitatory inputs evoked by the test sound might play a key role in shaping the acoustical response characteristics of the IC neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception
;
physiology
;
Chiroptera
;
physiology
;
Echolocation
;
physiology
;
Evoked Potentials, Auditory
;
Inferior Colliculi
;
cytology
;
physiology
;
Male
;
Neurons
;
physiology
;
Perceptual Masking
;
physiology