1.In vitro susceptibility testing of Aspergillus spp. against voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin.
Jun-yan SHI ; Ying-chun XU ; Yi SHI ; Huo-xiang LÜ ; Yong LIU ; Wang-sheng ZHAO ; Dong-mei CHEN ; Li-yan XI ; Xin ZHOU ; He WANG ; Li-na GUO
Chinese Medical Journal 2010;123(19):2706-2709
BACKGROUNDDuring recent years, the incidence of serious infections caused by opportunistic fungi has increased dramatically due to alterations of the immune status of patients with hematological diseases, malignant tumors, transplantations and so forth. Unfortunately, the wide use of triazole antifungal agents to treat these infections has lead to the emergence of Aspergillus spp. resistant to triazoles. The present study was to assess the in vitro activities of five antifungal agents (voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin) against different kinds of Aspergillus spp. that are commonly encountered in the clinical setting.
METHODSThe agar-based Etest MIC method was employed. One hundred and seven strains of Aspergillus spp. (5 species) were collected and prepared according to Etest Technique Manuel. Etest MICs were determined with RPMI agar containing 2% glucose and were read after incubation for 48 hours at 35°C. MIC(50), MIC(90) and MIC range were acquired by Whonet 5.4 software.
RESULTSThe MIC(90) of caspofungin against A. fumigatus, A. flavus and A. nidulans was 0.094 µg/ml whereas the MIC(90) against A. niger was 0.19 µg/ml. For these four species, the MIC(90) of caspofungin was the lowest among the five antifungal agents. For A. terrus, the MIC(90) of posaconazole was the lowest. For A. fumigatus and A. flavus, the MIC(90) in order of increasing was caspofungin, posaconazole, voriconazole, itraconazole, and amphotericin B. The MIC of amphotericin B against A. terrus was higher than 32 µg/ml in all 7 strains tested.
CONCLUSIONSThe in vitro antifungal susceptibility test shows the new drug caspofungin, which is a kind of echinocandins, has good activity against the five species of Aspergillus spp. and all the triazoles tested have better in vitro activity than traditional amphotericin B.
Amphotericin B ; pharmacology ; Antifungal Agents ; pharmacology ; Aspergillus ; drug effects ; Echinocandins ; pharmacology ; Itraconazole ; pharmacology ; Lipopeptides ; Microbial Sensitivity Tests ; Pyrimidines ; pharmacology ; Triazoles ; pharmacology ; Voriconazole
2.Antifungal susceptibility of clinically isolated invasive Candida tropicalis in East China from 2017 to 2021.
Fei Fei WAN ; Min ZHANG ; Jian GUO ; Wen Juan WU
Chinese Journal of Preventive Medicine 2023;57(10):1542-1549
Objective: To explore the epidemiological characteristics of sample distribution and antifungal susceptibilities of clinically invasive C. tropicalis isolates from 2017 to 2021 in East China. Methods: Using a retrospective analysis, the East China Invasive Fungal Infection Group (ECIFIG) collected C. tropicalis clinically isolated from 32 hospitals in East China between January 2017 and December 2021. The identification results of the strains were reviewed using mass spectrometry by the central laboratory of the Shanghai East Hospital. The minimum inhibitory concentrations (MICs) of the strains against fluconazole (FLU), voriconazole (VOR), itraconazole (ITR), Posaconazole (POS), isavuconazole (ISA), anidulafungin (ANI), caspofungin (CAS), micafungin (MICA) and 5-fluorocytosine (FCT) were tested by the ThermoFisher CMC1JHY colorimetric microdilution method. The MIC of amphotericin B (AMB) was tested by the broth microdilution method. The MIC results were analyzed based on the clinical breakpoints and epidemiological cutoff values (ECV) published by the Clinical and Laboratory Standards Institute (CLSI) M27 Ed3 and M57 Ed4 documents. Data analysis was conducted using the Kruskal-Wallis test and paired t-test. Results: In total, 305 C. tropicalis isolates were collected. There were 38.0% (116/305) strains isolated from blood, 11.5% (35/305) ascites, 8.9% (27/305) catheter and 8.9% (27/305) drainage fluid. The resistance rate of C. tropicalis to FLU was 32.5%, to VOR was 28.5%, and the cross-resistance rate to FLU and VOR was 28.5%. The wild-type proportions for ITR and POS were 79.3% and 29.2% respectively. There was no significant difference in resistance rates, MIC50, and MIC90 of FLU and VOR, or in the wild-type rates of ITR and POS over five years. More than 95.0% of the isolates were susceptible to echinocandins. However, one strain was identified as being multi-drug resistant. In azole antifungals, voriconazole, itraconazole, posaconazole, and isavuconazole have similar GM MIC values. The GM MIC of fluconazole is significantly higher than that of itraconazole (t=9.95, P<0.05), posaconazole (t=9.99, P<0.05), and voriconazole (t=10.01, P<0.05), Meanwhile, among echinocandins, the GM MIC of ANI was comparable to that of CAS (t=1.17, P>0.05), both of which were significantly higher than MICA (t=11.56, P<0.05; t=4.15, P<0.05). Conclusion: The clinical isolates of C. tropicalis in East China from 2017 to 2021 were relatively susceptible to echinocandins. However, there was consistently high resistance to fluconazole and voriconazole. More intensive efforts should be made on the monitoring of drug resistance in C. tropicalis.
Humans
;
Antifungal Agents/pharmacology*
;
Fluconazole/pharmacology*
;
Candida tropicalis
;
Voriconazole/pharmacology*
;
Itraconazole/pharmacology*
;
Retrospective Studies
;
Candida
;
China/epidemiology*
;
Echinocandins/pharmacology*
;
Microbial Sensitivity Tests
3.Antifungal susceptibility of clinically isolated invasive Candida tropicalis in East China from 2017 to 2021.
Fei Fei WAN ; Min ZHANG ; Jian GUO ; Wen Juan WU
Chinese Journal of Preventive Medicine 2023;57(10):1542-1549
Objective: To explore the epidemiological characteristics of sample distribution and antifungal susceptibilities of clinically invasive C. tropicalis isolates from 2017 to 2021 in East China. Methods: Using a retrospective analysis, the East China Invasive Fungal Infection Group (ECIFIG) collected C. tropicalis clinically isolated from 32 hospitals in East China between January 2017 and December 2021. The identification results of the strains were reviewed using mass spectrometry by the central laboratory of the Shanghai East Hospital. The minimum inhibitory concentrations (MICs) of the strains against fluconazole (FLU), voriconazole (VOR), itraconazole (ITR), Posaconazole (POS), isavuconazole (ISA), anidulafungin (ANI), caspofungin (CAS), micafungin (MICA) and 5-fluorocytosine (FCT) were tested by the ThermoFisher CMC1JHY colorimetric microdilution method. The MIC of amphotericin B (AMB) was tested by the broth microdilution method. The MIC results were analyzed based on the clinical breakpoints and epidemiological cutoff values (ECV) published by the Clinical and Laboratory Standards Institute (CLSI) M27 Ed3 and M57 Ed4 documents. Data analysis was conducted using the Kruskal-Wallis test and paired t-test. Results: In total, 305 C. tropicalis isolates were collected. There were 38.0% (116/305) strains isolated from blood, 11.5% (35/305) ascites, 8.9% (27/305) catheter and 8.9% (27/305) drainage fluid. The resistance rate of C. tropicalis to FLU was 32.5%, to VOR was 28.5%, and the cross-resistance rate to FLU and VOR was 28.5%. The wild-type proportions for ITR and POS were 79.3% and 29.2% respectively. There was no significant difference in resistance rates, MIC50, and MIC90 of FLU and VOR, or in the wild-type rates of ITR and POS over five years. More than 95.0% of the isolates were susceptible to echinocandins. However, one strain was identified as being multi-drug resistant. In azole antifungals, voriconazole, itraconazole, posaconazole, and isavuconazole have similar GM MIC values. The GM MIC of fluconazole is significantly higher than that of itraconazole (t=9.95, P<0.05), posaconazole (t=9.99, P<0.05), and voriconazole (t=10.01, P<0.05), Meanwhile, among echinocandins, the GM MIC of ANI was comparable to that of CAS (t=1.17, P>0.05), both of which were significantly higher than MICA (t=11.56, P<0.05; t=4.15, P<0.05). Conclusion: The clinical isolates of C. tropicalis in East China from 2017 to 2021 were relatively susceptible to echinocandins. However, there was consistently high resistance to fluconazole and voriconazole. More intensive efforts should be made on the monitoring of drug resistance in C. tropicalis.
Humans
;
Antifungal Agents/pharmacology*
;
Fluconazole/pharmacology*
;
Candida tropicalis
;
Voriconazole/pharmacology*
;
Itraconazole/pharmacology*
;
Retrospective Studies
;
Candida
;
China/epidemiology*
;
Echinocandins/pharmacology*
;
Microbial Sensitivity Tests
4.Natural products in clinical trials: antibacterial and antifungal agents.
Li HAN ; Dan ZHENG ; Xue-Shi HUANG ; Shi-Shan YU ; Xiao-Tian LIANG
Acta Pharmaceutica Sinica 2007;42(3):236-244
Natural products have played an important role in drug discovery. Today, therapeutics from natural origin count for about 70% of the worldwide human therapeutic sales. For anti-infective treatment even higher figures are reported. This review describes antibacterial and antifungal natural products, semi-synthetic natural products and natural product derived compounds undergoing clinical evaluation or registration from 1998 to end of 2005. In addition, natural product derived drugs launched since 1998 are also discussed in this review.
Anti-Bacterial Agents
;
chemistry
;
pharmacology
;
Antifungal Agents
;
chemistry
;
pharmacology
;
Biological Products
;
chemistry
;
pharmacology
;
Drug Resistance, Microbial
;
Drugs, Investigational
;
chemistry
;
pharmacology
;
Echinocandins
;
chemistry
;
pharmacology
;
Humans
;
Molecular Structure
;
Polyenes
;
chemistry
;
pharmacology
5.In vitro Evaluation of Antibiotic Lock Technique for the Treatment of Candida albicans, C. glabrata, and C. tropicalis Biofilms.
Kwan Soo KO ; Ji Young LEE ; Jae Hoon SONG ; Kyong Ran PECK
Journal of Korean Medical Science 2010;25(12):1722-1726
Candidaemia associated with intravascular catheter-associated infections is of great concern due to the resulting high morbidity and mortality. The antibiotic lock technique (ALT) was previously introduced to treat catheter-associated bacterial infections without removal of catheter. So far, the efficacy of ALT against Candida infections has not been rigorously evaluated. We investigated in vitro activity of ALT against Candida biofilms formed by C. albicans, C. glabrata, and C. tropicalis using five antifungal agents (caspofungin, amphotericin B, itraconazole, fluconazole, and voriconazole). The effectiveness of antifungal treatment was assayed by monitoring viable cell counts after exposure to 1 mg/mL solutions of each antibiotic. Fluconazole, itraconazole, and voriconazole eliminated detectable viability in the biofilms of all Candida species within 7, 10, and 14 days, respectively, while caspofungin and amphotericin B did not completely kill fungi in C. albicans and C. glabrata biofilms within 14 days. For C. tropicalis biofilm, caspofungin lock achieved eradication more rapidly than amphotericin B and three azoles. Our study suggests that azoles may be useful ALT agents in the treatment of catheter-related candidemia.
Amphotericin B/administration & dosage/pharmacology
;
Antifungal Agents/*administration & dosage/pharmacology/therapeutic use
;
Biofilms/*drug effects
;
Candida albicans/*drug effects/physiology
;
Candida glabrata/*drug effects/physiology
;
Candida tropicalis/*drug effects/physiology
;
Candidiasis/drug therapy
;
Catheter-Related Infections/drug therapy
;
Catheterization, Central Venous
;
Drug Administration Routes
;
Echinocandins/administration & dosage/pharmacology
;
Fluconazole/administration & dosage/pharmacology
;
Humans
;
Itraconazole/administration & dosage/pharmacology
;
Microbial Sensitivity Tests
;
Pyrimidines/administration & dosage/pharmacology
;
Triazoles/administration & dosage/pharmacology