1.Protective effects of recombinant human erythropoietin on oligodendrocyte after cerebral infarction.
Wei HUA ; He WU ; Min ZHOU ; Wei LIU ; Jiyuan ZHU ; Yunhe GU ; Zhen ZHANG ; Hongda WANG ; Qi LIU ; Jiping QI ; E-mail:qijiping2003@163.com.
Chinese Journal of Pathology 2015;44(5):323-328
OBJECTIVETo study biological effect of recombinant human erythropoietin (RhEPO) on the expression of oligodendrocyte in the neuron glia antigen 2(NG2), Nogo receptor-interacting protein 1(LINGO-1), myelin basic protein (MBP) and myelin associated glycoprotein (MAG), and to explore the protective mechanism of RhEPO for oligodendrocyte after cerebral infarction.
METHODSExperimental rats were randomly divided into the treatment group (RhEPO at a dose of 3 000 U/kg) or saline control group. Both groups received intraperitoneal injection of RhEPO after cerebral ischemia in 30 min, 3 h, 6 h, 12 h and 24 h, which was administered daily for 7 days. The modified neurological severity score (mNSS) and histology were analyzed, and immunohistochemistry was used to detect the protein expression of NG2, MAG, MBP and LINGO-1.
RESULTSThe overall mNSS of RhEPO treatment group significantly decreased compared with the saline control group on the seventh day after cerebral infarction (P<0.05). Such treatment effect was more obvious in the treatment group at 30 min and 3 h (P<0.01). Compared with the saline control group, the numbers of NG2 positive cells increased in RhEPO treatment group. In contrast, the expression of LINGO-1 protein significantly decreased (P<0.05), with a dramatic decrease observed at 30 min and 3 h (P<0.01). However, the expression of MBP protein decreased more significantly in saline control group, while the level of the MAG protein expression increased. The differences were statistically significant (P<0.05), especially at 30 min (P<0.01).
CONCLUSIONSAfter cerebral ischemia, RhEPO promotes the proliferation of NG2 positive cells, and inhibits the expression of LINGO-1 and MAG proteins. RhEPO improves the proliferation and differentiation of oligodendrocyte precursor cells, which in turn protects neuronal function, particularly at the early phase of ischemia.