1.Gut microbial dysbiosis under space environment: a review.
Hanwen ZHANG ; Xiuyun LIU ; Ruipeng WU ; Yujuan LI
Chinese Journal of Biotechnology 2023;39(10):4075-4084
Unique factors in the space environment can cause dysbiosis of astronauts' gut microbiota and its metabolites, which may exert systematic physiological effects on human body. Recent progress regarding the effect of space flight/simulated space environment (SF/SPE) on the composition of gut microbiota and its metabolites was reviewed in this paper. SF/SPE may cause the increase of invasive pathogenic bacteria and the decrease of beneficial bacteria, aggravating intestinal inflammation and increasing intestinal permeability. SF/SPE may also cause the decrease of beneficial metabolites or the increase of harmful metabolites of gut microbiota, leading to metabolism disorder in vivo, or inducing damage of other systems, thus not beneficial to the health and working efficiency of astronauts. Summarizing the effects of SF/SPE on gut microbiota may provide scientific basis for further researches in this field and the on-orbit health protection of astronauts.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Dysbiosis/microbiology*
;
Bacteria/metabolism*
2.Characteristic dysbiosis of gut microbiota of Chinese patients with diarrhea-predominant irritable bowel syndrome by an insight into the pan-microbiome.
Zhe WANG ; Cong-Min XU ; Yi-Xuan LIU ; Xiao-Qi WANG ; Lu ZHANG ; Mo LI ; Shi-Wei ZHU ; Zhong-Jie XIE ; Pei-Hong WANG ; Li-Ping DUAN ; Huai-Qiu ZHU
Chinese Medical Journal 2019;132(8):889-904
BACKGROUND:
Irritable bowel syndrome (IBS) is reported associated with the alteration of gut microbial composition termed as dysbiosis. However, the pathogenic mechanism of IBS remains unclear, while the studies of Chinese individuals are scarce. This study aimed to understand the concept of dysbiosis among patients with Chinese diarrhea-predominant IBS (IBS-D), as a degree of variance between the gut microbiomes of IBS-D population and that of a healthy population.
METHODS:
The patients with IBS-D were recruited (assessed according to the Rome III criteria, by IBS symptom severity score) from the Outpatient Department of Gastroenterology of Peking University Third Hospital, and volunteers as healthy controls (HCs) were enrolled, during 2013. The 16S rRNA sequences were extracted from fecal samples. Ribosomal database project resources, basic local alignment search tool, and SparCC software were used to obtain the phylotype composition of samples and the internal interactions of the microbial community. Herein, the non-parametric test, Wilcoxon rank-sum test was carried out to find the statistical significance between HC and IBS-D groups. All the P values were adjusted to q values to decrease the error rate.
RESULTS:
The study characterized the gut microbiomes of Chinese patients with IBS-D, and demonstrated that the dysbiosis could be characterized as directed alteration of the microbiome composition leading to greater disparity between relative abundance of two phyla, Bacteroidetes (Z = 4.77, q = 1.59 × 10) and Firmicutes (Z = -3.87, q = 5.83 × 10). Moreover, it indicated that the IBS symptom features were associated with the dysbiosis of whole gut microbiome, instead of one or several certain genera even they were dominating. Two genera, Bacteroides and Lachnospiracea incertae sedis, were identified as the core genera, meanwhile, the non-core genera contribute to a larger pan-microbiome of the gut microbiome. Furthermore, the dysbiosis in patients with IBS-D was associated with a reduction of network complexity of the interacted microbial community (HC vs. IBS-D: 639 vs. 154). The disordered metabolic functions of patients with IBS-D were identified as the potential influence of gut microbiome on the host (significant difference with q < 0.01 between HC and IBS-D).
CONCLUSIONS
This study supported the view of the potential influence of gut microbiome on the symptom of Chinese patients with IBS-D, and further characterized dysbiosis in Chinese patients with IBS-D, thus provided more pathological evidences for IBS-D with the further understanding of dysbiosis.
Diarrhea
;
microbiology
;
Dysbiosis
;
microbiology
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
genetics
;
Humans
;
Irritable Bowel Syndrome
;
microbiology
;
Models, Theoretical
;
RNA, Ribosomal, 16S
;
genetics
3.Helicobacter pylori may participate in the development of inflammatory bowel disease by modulating the intestinal microbiota.
Xiaoyin BAI ; Lingjuan JIANG ; Gechong RUAN ; Tingting LIU ; Hong YANG
Chinese Medical Journal 2022;135(6):634-638
Inflammatory bowel disease (IBD) is a non-specific inflammatory disease of the gastrointestinal (GI) tract that is generally accepted to be closely related to intestinal dysbiosis in the host. GI infections contribute a key role in the pathogenesis of IBD; however, although the results of recent clinical studies have revealed an inverse correlation between Helicobacter pylori (H. pylori) infection and IBD, the exact mechanism underlying the development of IBD remains unclear. H. pylori, as a star microorganism, has been a focus for decades, and recent preclinical and real-world studies have demonstrated that H. pylori not only affects the changes in the gastric microbiota and microenvironment but also influences the intestinal microbiota, indicating a potential correlation with IBD. Detailed analysis revealed that H. pylori infection increased the diversity of the intestinal microbiota, reduced the abundance of Bacteroidetes, augmented the abundance of Firmicutes, and produced short-chain fatty acid-producing bacteria such as Akkermansia. All these factors may decrease vulnerability to IBD. Further studies investigating the H. pylori-intestinal microbiota metabolite axis should be performed to understand the mechanism underlying the development of IBD.
Chronic Disease
;
Dysbiosis/microbiology*
;
Gastrointestinal Microbiome
;
Helicobacter Infections
;
Helicobacter pylori
;
Humans
;
Inflammatory Bowel Diseases/microbiology*
;
Microbiota
4.Features of gut microbiota in patients with anorexia nervosa.
Runxue YUAN ; Lei YANG ; Gaiqi YAO ; Shuxia GENG ; Qinggang GE ; Shining BO ; Xueni LI
Chinese Medical Journal 2022;135(16):1993-2002
BACKGROUND:
Anorexia nervosa (AN) is a psychological disorder, which is characterized by the misunderstanding of body image, food restriction, and low body weight. An increasing number of studies have reported that the pathophysiological mechanism of AN might be associated with the dysbiosis of gut microbiota. The purpose of our study was to explore the features of gut microbiota in patients with AN, hoping to provide valuable information on its pathogenesis and treatment.
METHODS:
In this cross-sectional study, from August 2020 to June 2021, patients with AN who were admitted into Peking University Third Hospital and Peking University Sixth Hospital ( n = 30) were recruited as the AN group, and healthy controls (HC) were recruited from a middle school and a university in Beijing ( n = 30). Demographic data, Hamilton Depression Scale (HAMD) scores of the two groups, and length of stay of the AN group were recorded. Microbial diversity analysis of gut microbiota in stool samples from the two groups was analyzed by 16S ribosomal RNA (rRNA) gene sequencing.
RESULTS:
The weight (AN vs. HC, [39.31 ± 7.90] kg vs. [56.47 ± 8.88] kg, P < 0.001) and body mass index (BMI, AN vs. HC, [14.92 ± 2.54] kg/m 2vs. [20.89 ± 2.14] kg/m 2 , P < 0.001) of patients with AN were statistically significantly lower than those of HC, and HAMD scores in AN group were statistically significantly higher than those of HC. For alpha diversity, there were no statistically significant differences between the two groups; for beta diversity, the two groups differed obviously regarding community composition. Compared to HC, the proportion of Lachnospiraceae in patients with AN was statistically significantly higher (AN vs. HC, 40.50% vs. 31.21%, Z = -1.981, P = 0.048), while that of Ruminococcaceae was lower (AN vs. HC, 12.17% vs. 19.15%, Z = -2.728, P = 0.007); the proportion of Faecalibacterium (AN vs. HC, 3.97% vs. 9.40%, Z = -3.638, P < 0.001) and Subdoligranulum (AN vs. HC, 4.60% vs. 7.02%, Z = -2.369, P = 0.018) were statistically significantly lower, while that of Eubacterium_hallii_group was significantly higher (AN vs. HC, 7.63% vs. 3.43%, Z = -2.115, P = 0.035). Linear discriminant effect (LEfSe) analysis (LDA score >3.5) showed that o_Lachnospirales, f_Lachnospiraceae, and g_Eubacterium_hallii_group (o, f and g represents order, family and genus respectively) were enriched in patients with AN. Microbial function of nutrient transport and metabolism in AN group were more abundant ( P > 0.05). In AN group, weight and BMI were significantly negatively correlated with the abundance of Bacteroidota and Bacteroides , while positively correlated with Subdoligranulum . BMI was significantly positively correlated with Firmicutes; HAMD scores were significantly negatively correlated with Faecalibacterium.
CONCLUSIONS
The composition of gut microbiota in patients with AN was different from that of healthy people. Clinical indicators have correlations with the abundance of gut microbiota in patients with AN.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Anorexia Nervosa
;
Cross-Sectional Studies
;
Dysbiosis/microbiology*
;
Body Mass Index
;
RNA, Ribosomal, 16S/genetics*
;
Feces/microbiology*
5.Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus.
Yan LI ; Kun WANG ; Bo ZHANG ; Qichao TU ; Yufei YAO ; Bomiao CUI ; Biao REN ; Jinzhi HE ; Xin SHEN ; Joy D VAN NOSTRAND ; Jizhong ZHOU ; Wenyuan SHI ; Liying XIAO ; Changqing LU ; Xuedong ZHOU
International Journal of Oral Science 2019;11(2):13-13
The biodiversity of the mycobiome, an important component of the oral microbial community, and the roles of fungal-bacterial and fungal-immune system interactions in the pathogenesis of oral lichen planus (OLP) remain largely uncharacterized. In this study, we sequenced the salivary mycobiome and bacteriome associated with OLP. First, we described the dysbiosis of the microbiome in OLP patients, which exhibits lower levels of fungi and higher levels of bacteria. Significantly higher abundances of the fungi Candida and Aspergillus in patients with reticular OLP and of Alternaria and Sclerotiniaceae_unidentified in patients with erosive OLP were observed compared to the healthy controls. Aspergillus was identified as an "OLP-associated" fungus because of its detection at a higher frequency than in the healthy controls. Second, the co-occurrence patterns of the salivary mycobiome-bacteriome demonstrated negative associations between specific fungal and bacterial taxa identified in the healthy controls, which diminished in the reticular OLP group and even became positive in the erosive OLP group. Moreover, the oral cavities of OLP patients were colonized by dysbiotic oral flora with lower ecological network complexity and decreased fungal-Firmicutes and increased fungal-Bacteroidetes sub-networks. Third, several keystone fungal genera (Bovista, Erysiphe, Psathyrella, etc.) demonstrated significant correlations with clinical scores and IL-17 levels. Thus, we established that fungal dysbiosis is associated with the aggravation of OLP. Fungal dysbiosis could alter the salivary bacteriome or may reflect a direct effect of host immunity, which participates in OLP pathogenesis.
Adult
;
Bacteria
;
isolation & purification
;
Case-Control Studies
;
Dysbiosis
;
complications
;
microbiology
;
Female
;
Humans
;
Lichen Planus, Oral
;
complications
;
microbiology
;
Male
;
Microbiota
;
Middle Aged
;
Mouth Mucosa
;
microbiology
;
Mycobiome
;
Saliva
;
microbiology
6.Disruption of the Gut Ecosystem by Antibiotics
Yonsei Medical Journal 2018;59(1):4-12
The intestinal microbiota is a complex ecosystem consisting of various microorganisms that expands human genetic repertoire and therefore affects human health and disease. The metabolic processes and signal transduction pathways of the host and intestinal microorganisms are intimately linked, and abnormal progression of each process leads to changes in the intestinal environment. Alterations in microbial communities lead to changes in functional structures based on the metabolites produced in the gut, and these environmental changes result in various bacterial infections and chronic enteric inflammatory diseases. Here, we illustrate how antibiotics are associated with an increased risk of antibiotic-associated diseases by driving intestinal environment changes that favor the proliferation and virulence of pathogens. Understanding the pathogenesis caused by antibiotics would be a crucial key to the treatment of antibiotic-associated diseases by mitigating changes in the intestinal environment and restoring it to its original state.
Anti-Bacterial Agents/pharmacology
;
Bacteria/drug effects
;
Bacteria/growth & development
;
Dysbiosis/microbiology
;
Gastrointestinal Microbiome/drug effects
;
Humans
;
Intestines/drug effects
;
Intestines/microbiology
;
Symbiosis/drug effects