1.Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice.
Rongchun WANG ; Danhui YANG ; Chaofeng TU ; Cheng LEI ; Shuizi DING ; Ting GUO ; Lin WANG ; Ying LIU ; Chenyang LU ; Binyi YANG ; Shi OUYANG ; Ke GONG ; Zhiping TAN ; Yun DENG ; Yueqiu TAN ; Jie QING ; Hong LUO
Frontiers of Medicine 2023;17(5):957-971
Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.
Humans
;
Male
;
Animals
;
Mice
;
Semen/metabolism*
;
Dyneins/metabolism*
;
Cilia/metabolism*
;
Mutation
;
Ciliary Motility Disorders/genetics*
2.A recurrent homozygous missense mutation in CCDC103 causes asthenoteratozoospermia due to disorganized dynein arms.
Muhammad ZUBAIR ; Ranjha KHAN ; Ao MA ; Uzma HAMEED ; Mazhar KHAN ; Tanveer ABBAS ; Riaz AHMAD ; Jian-Teng ZHOU ; Wasim SHAH ; Ansar HUSSAIN ; Nisar AHMED ; Ihsan KHAN ; Khalid KHAN ; Yuan-Wei ZHANG ; Huan ZHANG ; Li-Min WU ; Qing-Hua SHI
Asian Journal of Andrology 2022;24(3):255-259
Asthenoteratozoospermia is one of the most severe types of qualitative sperm defects. Most cases are due to mutations in genes encoding the components of sperm flagella, which have an ultrastructure similar to that of motile cilia. Coiled-coil domain containing 103 (CCDC103) is an outer dynein arm assembly factor, and pathogenic variants of CCDC103 cause primary ciliary dyskinesia (PCD). However, whether CCDC103 pathogenic variants cause severe asthenoteratozoospermia has yet to be determined. Whole-exome sequencing (WES) was performed for two individuals with nonsyndromic asthenoteratozoospermia in a consanguineous family. A homozygous CCDC103 variant segregating recessively with an infertility phenotype was identified (ENST00000035776.2, c.461A>C, p.His154Pro). CCDC103 p.His154Pro was previously reported as a high prevalence mutation causing PCD, though the reproductive phenotype of these PCD individuals is unknown. Transmission electron microscopy (TEM) of affected individuals' spermatozoa showed that the mid-piece was severely damaged with disorganized dynein arms, similar to the abnormal ultrastructure of respiratory ciliary of PCD individuals with the same mutation. Thus, our findings expand the phenotype spectrum of CCDC103 p.His154Pro as a novel pathogenic gene for nonsyndromic asthenospermia.
Asthenozoospermia/pathology*
;
Dyneins/genetics*
;
Homozygote
;
Humans
;
Male
;
Microtubule-Associated Proteins
;
Mutation
;
Mutation, Missense
;
Sperm Tail/metabolism*
3.Identification of a novel splice site mutation in the DNAAF4 gene of a Chinese patient with primary ciliary dyskinesia.
Yang XU ; Jing WANG ; Ji-Hai LIU ; Qing-Qiang GAO ; Bing WANG ; Zhi-Peng XU
Asian Journal of Andrology 2023;25(6):713-718
Primary ciliary dyskinesia (PCD) is a rare hereditary orphan condition that results in variable phenotypes, including infertility. About 50 gene variants are reported in the scientific literature to cause PCD, and among them, dynein axonemal assembly factor 4 ( DNAAF4 ) has been recently reported. DNAAF4 has been implicated in the preassembly of a multiunit dynein protein essential for the normal function of locomotory cilia as well as flagella. In the current study, a single patient belonging to a Chinese family was recruited, having been diagnosed with PCD and asthenoteratozoospermia. The affected individual was a 32-year-old male from a nonconsanguineous family. He also had abnormal spine structure and spinal cord bends at angles diagnosed with scoliosis. Medical reports, laboratory results, and imaging data were investigated. Whole-exome sequencing, Sanger sequencing, immunofluorescence analysis, hematoxylin-eosin staining, and in silico functional analysis, including protein modeling and docking studies, were used. The results identified DNAAF4 disease-related variants and confirmed their pathogenicity. Genetic analysis through whole-exome sequencing identified two pathogenic biallelic variants in the affected individual. The identified variants were a hemizygous splice site c.784-1G>A and heterozygous 20.1 Kb deletion at the DNAAF4 locus, resulting in a truncated and functionless DNAAF4 protein. Immunofluorescence analysis indicated that the inner dynein arm was not present in the sperm flagellum, and sperm morphological analysis revealed small sperm with twisted and curved flagella or lacking flagella. The current study found novel biallelic variants causing PCD and asthenoteratozoospermia, extending the range of DNAAF4 pathogenic variants in PCD and associated with the etiology of asthenoteratozoospermia. These findings will improve our understanding of the etiology of PCD.
Adult
;
Humans
;
Male
;
Asthenozoospermia/genetics*
;
Dyneins/genetics*
;
East Asian People
;
Kartagener Syndrome/genetics*
;
Mutation
;
Proteins/genetics*
;
Semen/metabolism*
4.Clinical features of primary ciliary dyskinesia.
Yong-Xiang WEI ; Fei-Hong XING ; Xu-Tao MIAO ; Xiao-Chao LIU ; Xin ZHANG ; Jing LIN ; Yi-Lin SUN ; De-Min HAN
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2007;42(3):195-198
OBJECTIVETo investigate the clinical features, diagnosis and treatment of primary ciliary dyskinesia (PCD).
METHODSThree cases of PCD received endoscopic sinus surgery and were followed up for life quality and recovery. Among these 3 cases, two were twin brothers and the other girl was twin born with a healthy brother. The mucosa of inferior turbinate was extracted prior to the operation without narcotic and decongestant. The ultrastructure of mucosal cilia was detected with electron microscope. Nine exons of gene DNAH5 and chromosome in one case and her fraternal twin were evaluated.
RESULTSNasal and sinus CT imaging of the 3 cases showed chronic pansinusitis (1 case accompanied with situs inversus according with the diagnosis of Kartagener syndrome). The nasal polyp was resected, and the sinuses were opened. The twin brothers received the adenoidectomy. All patients felt nasal ventilation improved while the surgical field still covered with thick discharges during follow-up for 2 - 4 years. Ciliary ultrastructures of the three cases showed lateral dynein absent, the sequence of 9 exons of DNAH5 and chromosome presented no change in the fraternal twins.
CONCLUSIONSSurgery could improve the symptoms of sinusitis in PCD. Change of ciliary ultrastructure was an important indication of its pathological changes and molecular biology evaluation needs further study.
Axonemal Dyneins ; metabolism ; Child ; Cilia ; ultrastructure ; Exons ; Female ; Humans ; Kartagener Syndrome ; diagnosis ; genetics ; pathology ; Male ; Sinusitis ; diagnosis ; etiology ; genetics ; Young Adult
5.Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling.
Zhi-Dong LIU ; Su ZHANG ; Jian-Jin HAO ; Tao-Rong XIE ; Jian-Sheng KANG
Protein & Cell 2016;7(9):638-650
Neuronal atrophy is a common pathological feature occurred in aging and neurodegenerative diseases. A variety of abnormalities including motor protein malfunction and mitochondrial dysfunction contribute to the loss of neuronal architecture; however, less is known about the intracellular signaling pathways that can protect against or delay this pathogenic process. Here, we show that the DYNC1I1 deficiency, a neuron-specific dynein intermediate chain, causes neuronal atrophy in primary hippocampal neurons. With this cellular model, we are able to find that activation of RAS-RAF-MEK signaling protects against neuronal atrophy induced by DYNC1I1 deficiency, which relies on MEK-dependent autophagy in neuron. Moreover, we further reveal that BRAF also protects against neuronal atrophy induced by mitochondrial impairment. These findings demonstrate protective roles of the RAS-RAF-MEK axis against neuronal atrophy, and imply a new therapeutic target for clinical intervention.
Animals
;
Cell Line
;
Cytoplasmic Dyneins
;
genetics
;
metabolism
;
Hippocampus
;
metabolism
;
pathology
;
MAP Kinase Kinase Kinases
;
genetics
;
metabolism
;
MAP Kinase Signaling System
;
Mice
;
Mice, Knockout
;
Neurodegenerative Diseases
;
genetics
;
metabolism
;
pathology
;
Proto-Oncogene Proteins B-raf
;
genetics
;
metabolism
;
ras Proteins
;
genetics
;
metabolism
6.N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points.
Md Ariful ISLAM ; Syeda Ridita SHARIF ; Hyunsook LEE ; Dae Hyun SEOG ; Il Soo MOON
Experimental & Molecular Medicine 2015;47(8):e177-
N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74-96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching.
Amino Acid Sequence
;
Animals
;
Cells, Cultured
;
Cytoplasmic Dyneins/chemistry/*metabolism
;
Dendrites/metabolism
;
Golgi Apparatus/metabolism
;
HEK293 Cells
;
Hippocampus
;
Humans
;
Molecular Sequence Data
;
Neurons/*metabolism
;
Phosphotransferases (Alcohol Group Acceptor)/*metabolism
;
Protein Interaction Maps
;
Rats, Sprague-Dawley
;
Tubulin
7.Intramanchette transport during primate spermiogenesis: expression of dynein, myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein, and Rab27b in the manchette during human and monkey spermiogenesis.
Shinichi HAYASAKA ; Yukihiro TERADA ; Kichiya SUZUKI ; Haruo MURAKAWA ; Ikuo TACHIBANA ; Tadashi SANKAI ; Takashi MURAKAMI ; Nobuo YAEGASHI ; Kunihiro OKAMURA
Asian Journal of Andrology 2008;10(4):561-568
AIMTo show whether molecular motor dynein on a microtubule track, molecular motor myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein (MyRIP), and vesicle receptor Rab27b on an F-actin track were present during human and monkey spermiogenesis involving intramanchette transport (IMT).
METHODSSpermiogenic cells were obtained from three men with obstructive azoospermia and normal adult cynomolgus monkey (Macaca fascicularis). Immunocytochemical detection and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the proteins were carried out. Samples were analyzed by light microscope.
RESULTSUsing RT-PCR, we found that dynein, myosin Va, MyRIP and Rab27b were expressed in monkey testis. These proteins were localized to the manchette, as shown by immunofluorescence, particularly during human and monkey spermiogenesis.
CONCLUSIONWe speculate that during primate spermiogenesis, those proteins that compose microtubule-based and actin-based vesicle transport systems are actually present in the manchette and might possibly be involved in intramanchette transport.
Actins ; metabolism ; Adult ; Animals ; Biological Transport ; physiology ; Dyneins ; metabolism ; Humans ; Macaca fascicularis ; Male ; Microtubules ; metabolism ; Myosin Heavy Chains ; metabolism ; Myosin Type V ; metabolism ; Myosins ; metabolism ; Spermatids ; cytology ; metabolism ; Spermatogenesis ; physiology ; Testis ; cytology ; metabolism ; Transport Vesicles ; physiology ; Vesicular Transport Proteins ; metabolism ; rab GTP-Binding Proteins ; metabolism
8.Effect of dynein inhibitor on mouse oocyte in vitro maturation and its cyclin B1 mRNA level.
Xiao-Mei WANG ; Tian-Hua HUANG ; Qing-Dong XIE ; Qing-Jian ZHANG ; Ye RUAN
Biomedical and Environmental Sciences 2004;17(3):341-349
OBJECTIVETo evaluate the effect of dynein inhibitor on mouse oocyte in vitro maturation and its cyclin B1 transcription level.
METHODSImmature mouse oocytes were cultured in vitro with a known dynein ATPase activity inhibitor-sodium orthovanadate (SOV) to detect the changes of maturation rate, and semi-quantitative RT-PCR and single cell RT-PCR were performed to detect the changes of cyclin B1 mRNA level.
RESULTSIn dose-dependent experiments, the maturation rates of oocytes were significantly different between 5 micromol/L SOV and control groups (P < 0.05), and decreased with SOV increasing doses. However, the elevation of cyclin B1 mRNA level of immatured oocytes cultured for 12 h depended on SOV concentrations ranging from 50 to 500 micromol/L. In incontinuity exposed SOV experiments, the maturation rates of oocytes markedly reduced after the first incubation with 400 micromol/L SOV at least for 1 h and were first cultured in SOV-free medium for 4 h or 8 h before exposure to SOV (P < 0.05). In time-course experiment, the opposite changes of cyclin B1 mRNA level in oocytes between SOV and control groups were observed.
CONCLUSIONDynein inhibitor might delay oocytes meiosis process, and cause ectopic expression of cyclin B1 in oocytes. Most Oocytes incubated with SOV blocked at germinal vesicles (GV) stage or M I to anaphase transition due to dynein dysfunction and ectopic transcription level of cyclin B1.
Animals ; Cells, Cultured ; Cyclin B ; genetics ; metabolism ; Cyclin B1 ; Dyneins ; antagonists & inhibitors ; Female ; Gene Expression Regulation ; Meiosis ; drug effects ; Mice ; Mice, Inbred BALB C ; Oocytes ; drug effects ; growth & development ; metabolism ; RNA, Messenger ; analysis ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Time Factors ; Vanadates ; pharmacology