1.Effect of shexiang baoxin pill in alleviating myocardial fibrosis in spontaneous hypertensive rats.
Duo-Jiao WU ; Hua-Shan HONG ; Qiong JIANG
Chinese Journal of Integrated Traditional and Western Medicine 2005;25(4):350-353
OBJECTIVETo investigate the effects and mechanisms of Shexiang Baoxin Pill (SBP) on myocardial fibrosis in spontaneous hypertensive rats (SHR).
METHODSSHR of 12 weeks old were divided into the SBP group, the control group (treated with benazepril) and the model control group. The effects on such indexes as systolic blood pressure (SBP), left ventricular mass (LVM), left ventricular mass index (LVMI), content of myocardial collagen (MC) in left ventricle, extracellular matrix fibronectin (FN), laminin (LN), cardiac fibroblast (cFb) and transforming growth factor-beta1 (TGF-beta1) were determined after 12 weeks of treatment.
RESULTSSBP had no marked pressure depressive effect, but had the effect similar to that of benazepril in reducing the level of LVM, LVMI and content of MC (P < 0.05), as well as the content of LN, FN in myocardium, cFb count and TGF-beta1 expression (P < 0.05).
CONCLUSIONSBP can prevent and treat myocardial fibrosis, whose action is independent of its hypotensive effect. The mechanism may be associated with such factors as the decrease of MC synthesis in left ventricle and the deposition of extracellular matrix.
Animals ; Collagen ; biosynthesis ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Fibrosis ; prevention & control ; Hypertension ; drug therapy ; pathology ; Hypertrophy, Left Ventricular ; prevention & control ; Male ; Myocardium ; pathology ; Phytotherapy ; Random Allocation ; Rats ; Rats, Inbred SHR ; Transforming Growth Factor beta ; biosynthesis ; genetics ; Transforming Growth Factor beta1
2.Effects and pathophysiological significance of intestinal flora on the enteric neuro-endocrine-immune system.
Han-Nan XU ; Zheng-Zhen CAI ; Yun WANG ; Duo-Er WU ; Wei-Fang RONG ; Guo-Hua ZHANG
Acta Physiologica Sinica 2020;72(3):347-360
Interactions among the nervous, the endocrine and the immune systems enable the gut to respond to the dietary products, pathogens and microbiota, which maintains the homeostasis of the body. However, dysbiosis may induce or aggravate the gastrointestinal (GI) and extra-GI diseases through changing the activities of enteric nervous system (ENS), enteroendocrine cells and enteric immune cells. Here we review recent advances in the understandings on how intestinal flora may impact the enteric neuro-endocrine-immune system in the gut, thereby contributing to the regulation of pathophysiological processes.
Enteric Nervous System
;
Gastrointestinal Diseases
;
Gastrointestinal Microbiome
;
Humans
;
Immune System
3.Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria.
Li-Long PAN ; Zheng-Nan REN ; Jun YANG ; Bin-Bin LI ; Yi-Wen HUANG ; Dong-Xiao SONG ; Xuan LI ; Jia-Jia XU ; Madhav BHATIA ; Duo-Wu ZOU ; Chun-Hua ZHOU ; Jia SUN
Acta Pharmaceutica Sinica B 2023;13(10):4202-4216
Chronic pancreatitis (CP) is a progressive and irreversible fibroinflammatory disorder, accompanied by pancreatic exocrine insufficiency and dysregulated gut microbiota. Recently, accumulating evidence has supported a correlation between gut dysbiosis and CP development. However, whether gut microbiota dysbiosis contributes to CP pathogenesis remains unclear. Herein, an experimental CP was induced by repeated high-dose caerulein injections. The broad-spectrum antibiotics (ABX) and ABX targeting Gram-positive (G+) or Gram-negative bacteria (G-) were applied to explore the specific roles of these bacteria. Gut dysbiosis was observed in both mice and in CP patients, which was accompanied by a sharply reduced abundance for short-chain fatty acids (SCFAs)-producers, especially G+ bacteria. Broad-spectrum ABX exacerbated the severity of CP, as evidenced by aggravated pancreatic fibrosis and gut dysbiosis, especially the depletion of SCFAs-producing G+ bacteria. Additionally, depletion of SCFAs-producing G+ bacteria rather than G- bacteria intensified CP progression independent of TLR4, which was attenuated by supplementation with exogenous SCFAs. Finally, SCFAs modulated pancreatic fibrosis through inhibition of macrophage infiltration and M2 phenotype switching. The study supports a critical role for SCFAs-producing G+ bacteria in CP. Therefore, modulation of dietary-derived SCFAs or G+ SCFAs-producing bacteria may be considered a novel interventive approach for the management of CP.
4.Remote ischemic conditioning-induced hyperacute and acute responses of plasma proteome in healthy young male adults: a quantitative proteomic analysis.
Siying SONG ; Hao WU ; Yunhuan LIU ; Duo LAN ; Baolian JIAO ; Shuling WAN ; Yibing GUO ; Da ZHOU ; Yuchuan DING ; Xunming JI ; Ran MENG
Chinese Medical Journal 2023;136(2):150-158
BACKGROUND:
Long-term remote ischemic conditioning (RIC) has been proven to be beneficial in multiple diseases, such as cerebral and cardiovascular diseases. However, the hyperacute and acute effects of a single RIC stimulus are still not clear. Quantitative proteomic analyses of plasma proteins following RIC application have been conducted in preclinical and clinical studies but exhibit high heterogeneity in results due to wide variations in experimental setups and sampling procedures. Hence, this study aimed to explore the immediate effects of RIC on plasma proteome in healthy young adults to exclude confounding factors of disease entity, such as medications and gender.
METHODS:
Young healthy male participants were enrolled after a systematic physical examination and 6-month lifestyle observation. Individual RIC sessions included five cycles of alternative ischemia and reperfusion, each lasting for 5 min in bilateral forearms. Blood samples were collected at baseline, 5 min after RIC, and 2 h after RIC, and then samples were processed for proteomic analysis using liquid chromatography-tandem mass spectrometry method.
RESULTS:
Proteins related to lipid metabolism (e.g., Apolipoprotein F), coagulation factors (hepatocyte growth factor activator preproprotein), members of complement cascades (mannan-binding lectin serine protease 1 isoform 2 precursor), and inflammatory responses (carboxypeptidase N catalytic chain precursor) were differentially altered at their serum levels following the RIC intervention. The most enriched pathways were protein glycosylation and complement/coagulation cascades.
CONCLUSIONS
One-time RIC stimulus may induce instant cellular responses like anti-inflammation, coagulation, and fibrinolysis balancing, and lipid metabolism regulation which are protective in different perspectives. Protective effects of single RIC in hyperacute and acute phases may be exploited in clinical emergency settings due to apparently beneficial alterations in plasma proteome profile. Furthermore, the beneficial effects of long-term (repeated) RIC interventions in preventing chronic cardiovascular diseases among general populations can also be expected based on our study findings.
Young Adult
;
Humans
;
Male
;
Proteome
;
Cardiovascular Diseases
;
Proteomics
;
Ischemia
;
Blood Coagulation
5.Effects of Kaixin Jieyu Decoction () on behavior, monoamine neurotransmitter levels, and serotonin receptor subtype expression in the brain of a rat depression model.
Shi-jing HUANG ; Xian-hui ZHANG ; Yan-yun WANG ; Ju-hua PAN ; Han-ming CUI ; Su-ping FANG ; Wei WU ; Jun ZHENG ; Duo-jiao LI ; Ge BAI
Chinese journal of integrative medicine 2014;20(4):280-285
OBJECTIVETo determine the mechanisms underlying the anti-depressant effects of Kaixin Jieyu Decoction (, KJD) by investigating the effects of KJD on behavior, monoamine neurotransmitter levels, and serotonin (5-HT) receptor subtype expression in the brain in a rat model of depression.
METHODSThe rat depression model was established using chronic unpredictable mild stress (CUMS). Forty-eight Sprague Dawley rats were randomly divided into control, depression model (CUMS), CUMS+KJD (7.7 g/kg(-1)·d(-1) of crude drug), and CUMS+fluoxetine (2.4 mg/kg(-1)·d(-1)) groups (n=12 in each group), and the treatments lasted for 21 days. We regularly evaluated body weight, sucrose consumption, and horizontal and vertical activity scores in open-field tests. The content of the monoamine neurotransmitters 5-HT, norepinephrine (NE), and dopamine (DA) and the DA metabolite homovanillic acid in the cerebral cortex, and 5-HT1A and 5-HT2A receptor mRNA in the cerebral cortex and the hippocampus, were determined respectively by high-performance liquid chromatography-coularray electrochemical detector and real-time polymerase chain reaction.
RESULTSCompared with the control group, CUMS rats showed a variety of depression-like behavioral changes, including a significant reduction in body weight, sucrose consumption, and horizontal and vertical activity scores in open-field tests (P<0.05 or P<0.01), and a significant decrease in 5-HT and NE levels and 5-HT2A receptor mRNA expression. In contrast, they showed a significant increase in 5-HT1A receptor mRNA expression in the cerebral cortex. In the hippocampus, 5-HT1A receptor mRNA expression was lower whereas 5-HT2A receptor mRNA expression was higher than in the control group (P<0.05 or P<0.01). Treatment with KJD or fluoxetine partially attenuated these changes (P<0.05 or P<0.01).
CONCLUSIONKJD could normalize the levels of 5-HT and NE and adjust the balance of 5-HT1A and 5-HT2A receptor expression in rat cerebrum, and this may be one of mechanisms of antidepressant effects of KJD.
Animals ; Behavior, Animal ; drug effects ; Biogenic Monoamines ; metabolism ; Depression ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Serotonin ; classification ; metabolism