1.Identification of Pancreatic Cancer-Associated Tumor Antigen from HSP-Enriched Tumor Lysate-Pulsed Human Dendritic Cells.
Han Soo KIM ; Dukjin KANG ; Myeong Hee MOON ; Hyung Jik KIM
Yonsei Medical Journal 2014;55(4):1014-1027
PURPOSE: Vaccine strategies utilizing dendritic cells (DCs) to elicit anti-tumor immunity are the subject of intense research. Although we have shown that DCs pulsed with heat-treated tumor lysate (HTL) induced more potent anti-tumor immunity than DCs pulsed with conventional tumor lysate (TL), the underlying molecular mechanism is unclear. In order to explore the molecular basis of this approach and to identify potential antigenic peptides from pancreatic cancer, we analyzed and compared the major histocompatibility complex (MHC) ligands derived from TL- and HTL-pulsed dendritic cells by mass spectrophotometry. MATERIALS AND METHODS: Human monocyte-derived dendritic cells were pulsed with TL or HTL prior to maturation induction. To delineate differences of MHC-bound peptide repertoire eluted from DCs pulsed with TL or HTL, nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS) was employed. RESULTS: HTL, but not TL, significantly induced DC function, assessed by phenotypic maturation, allostimulation capacity and IFN-gamma secretion by stimulated allogeneic T cells. DCs pulsed with TL or HTL displayed pancreas or pancreatic cancer-related peptides in context of MHC class I and II molecules. Some of the identified peptides had not been previously reported as expressed in pancreatic cancer or cancer of other tissue types. CONCLUSION: Our partial lists of MHC-associated peptides revealed the differences between peptide profiles eluted from HTL-and TL-loaded DCs, implying that induced heat shock proteins in HTL chaperone tumor-derived peptides enhanced their delivery to DCs and promoted cross-presentation by DC. These findings may aid in identifying novel tumor antigens or biomarkers and in designing future vaccination strategies.
Antigens, Neoplasm/*immunology
;
Cell Line, Tumor
;
Dendritic Cells/*immunology
;
Humans
;
Pancreatic Neoplasms/*immunology
2.Changes in lipid and carnitine concentrations following repeated fasting-refeeding in mice.
Se Wha KANG ; Eun Mi AHN ; Youn Soo CHA
Nutrition Research and Practice 2010;4(6):477-485
The purpose of this study was to evaluate the effects of repeated fasting and refeeding on lipid metabolism. Thirty male ICR mice, aged 6 weeks, were fed an AIN-93 control diet during the experimental period. The mice were divided into 5 groups: Non fasting group (ad libitum-fed, NF), fasting for 3 days (F), fasting for 3 days and then refeeding for 4 days repeated once (FRF1), fasting for 3 days and then refeeding for 4 days repeated twice (FRF2), and fasting for 3 days and then refeeding for 4 days repeated three times (FRF3). Rates of body weight gain, epididymal fat weight, and serum TG were significantly decreased in the F, FRF1, FRF2, and FRF3 groups, compared to the NF group. LDL-cholesterol was significantly higher in the FRF3 group than the NF and F groups, but HDL-cholesterol and HDL/TC were significantly lower in the FRF3 group than in the NF and F groups. Serum total carnitine was significantly lower in the FRF1, FRF2, FRF3 groups than the NF and F groups. However, rates of serum and hepatic acyl-carnitine concentration were significantly lower in FRF1, FRF2, and FRF3 than in NF and F. Repeated fasting-refeeding resulted in visible reductions of body weight and fat mass, but it caused ill-effects with lipid and carnitine metabolism in the body.
Adipose Tissue
;
Aged
;
Animals
;
Body Weight
;
Carnitine
;
Diet
;
Fasting
;
Humans
;
Lipid Metabolism
;
Male
;
Mice
;
Mice, Inbred ICR
;
Obesity
3.Guidelines for Manufacturing and Application of Organoids: Liver
Hye-Ran MOON ; Seon Ju MUN ; Tae Hun KIM ; Hyemin KIM ; Dukjin KANG ; Suran KIM ; Ji Hyun SHIN ; Dongho CHOI ; Sun-Ju AHN ; Myung Jin SON
International Journal of Stem Cells 2024;17(2):120-129
Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.