1.Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex.
Kayoung JOO ; Duck Joo RHIE ; Hyun Jong JANG
The Korean Journal of Physiology and Pharmacology 2015;19(6):523-531
Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, gamma-aminobutyric acid receptor type A (GABA(A)R)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABA(A)R-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABA(A)R- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.
Animals
;
Critical Period (Psychology)*
;
Humans
;
Long-Term Potentiation*
;
N-Methylaspartate*
;
Plastics
;
Rats*
;
Receptors, AMPA
;
Receptors, GABA
;
Receptors, GABA-A
;
Serotonin
;
Synaptic Transmission
;
Visual Cortex*
2.Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats
Dongchul SHIN ; Kwang-Hyun CHO ; Kayoung JOO ; Duck-Joo RHIE
The Korean Journal of Physiology and Pharmacology 2020;24(6):517-527
Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs.Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.
3.Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats
Dongchul SHIN ; Kwang-Hyun CHO ; Kayoung JOO ; Duck-Joo RHIE
The Korean Journal of Physiology and Pharmacology 2020;24(6):517-527
Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs.Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.
4.Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex
Kwang Hyun CHO ; Seul Yi LEE ; Kayoung JOO ; Duck Joo RHIE
The Korean Journal of Physiology and Pharmacology 2019;23(5):317-328
It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.
Animals
;
Automatic Data Processing
;
Dendrites
;
Depression
;
Inhibitory Postsynaptic Potentials
;
Kinetics
;
Pyramidal Cells
;
Rats
;
Receptors, AMPA
;
Receptors, Muscarinic
;
Synapses
;
Synaptic Transmission
;
Visual Cortex
5.Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex.
Kayoung JOO ; Shin Hee YOON ; Duck Joo RHIE ; Hyun Jong JANG
The Korean Journal of Physiology and Pharmacology 2014;18(6):517-524
Phasic and tonic gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the GABA(A) receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via Ca2+ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.
Animals
;
Automatic Data Processing
;
Bicuculline
;
Brain
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2*
;
Cyclic AMP-Dependent Protein Kinases
;
Inhibitory Postsynaptic Potentials
;
Membrane Potentials
;
Nervous System
;
Neurons
;
Protein Kinases
;
Rats*
;
Receptors, GABA-A
;
Visual Cortex*
6.Open channel block of Kv1.4 potassium channels by aripiprazole
Jeaneun PARK ; Kwang-Hyun CHO ; Hong Joon LEE ; Jin-Sung CHOI ; Duck-Joo RHIE
The Korean Journal of Physiology and Pharmacology 2020;24(6):545-553
Aripiprazole is a quinolinone derivative approved as an atypical antipsychotic drug for the treatment of schizophrenia and bipolar disorder. It acts as with partial agonist activities at the dopamine D2 receptors. Although it is known to be relatively safe for patients with cardiac ailments, less is known about the effect of aripiprazole on voltage-gated ion channels such as transient A-type K+ channels, which are important for the repolarization of cardiac and neuronal action potentials. Here, we investigated the effects of aripiprazole on Kv1.4 currents expressed in HEK293 cells using a whole-cell patch-clamp technique. Aripiprazole blocked Kv1.4 channels in a concentration-dependent manner with an IC50 value of 4.4 μM and a Hill coefficient of 2.5. Aripiprazole also accelerated the activation (time-to-peak) and inactivation kinetics. Aripiprazole induced a voltage-dependent (δ = 0.17) inhibition, which was use-dependent with successive pulses on Kv1.4 currents without altering the time course of recovery from inactivation. Dehydroaripiprazole, an active metabolite of aripiprazole, inhibited Kv1.4 with an IC50 value of 6.3 μM (p < 0.05 compared with aripiprazole) with a Hill coefficient of 2.0. Furthermore, aripiprazole inhibited Kv4.3 currents to a similar extent in a concentration-dependent manner with an IC50 value of 4.9 μM and a Hill coefficient of 2.3. Thus, our results indicate that aripiprazole blocked Kv1.4 by preferentially binding to the open state of the channels.
7.Open channel block of Kv1.4 potassium channels by aripiprazole
Jeaneun PARK ; Kwang-Hyun CHO ; Hong Joon LEE ; Jin-Sung CHOI ; Duck-Joo RHIE
The Korean Journal of Physiology and Pharmacology 2020;24(6):545-553
Aripiprazole is a quinolinone derivative approved as an atypical antipsychotic drug for the treatment of schizophrenia and bipolar disorder. It acts as with partial agonist activities at the dopamine D2 receptors. Although it is known to be relatively safe for patients with cardiac ailments, less is known about the effect of aripiprazole on voltage-gated ion channels such as transient A-type K+ channels, which are important for the repolarization of cardiac and neuronal action potentials. Here, we investigated the effects of aripiprazole on Kv1.4 currents expressed in HEK293 cells using a whole-cell patch-clamp technique. Aripiprazole blocked Kv1.4 channels in a concentration-dependent manner with an IC50 value of 4.4 μM and a Hill coefficient of 2.5. Aripiprazole also accelerated the activation (time-to-peak) and inactivation kinetics. Aripiprazole induced a voltage-dependent (δ = 0.17) inhibition, which was use-dependent with successive pulses on Kv1.4 currents without altering the time course of recovery from inactivation. Dehydroaripiprazole, an active metabolite of aripiprazole, inhibited Kv1.4 with an IC50 value of 6.3 μM (p < 0.05 compared with aripiprazole) with a Hill coefficient of 2.0. Furthermore, aripiprazole inhibited Kv4.3 currents to a similar extent in a concentration-dependent manner with an IC50 value of 4.9 μM and a Hill coefficient of 2.3. Thus, our results indicate that aripiprazole blocked Kv1.4 by preferentially binding to the open state of the channels.
8.Analysis of Basic Medicine-Related Questions in the Korean Medical Licensing Examination (2016–2018)
Hyun KOOK ; Sae-Ock OH ; Duck-Joo RHIE ; Sun-Ho KEE ; Yong-Sung JUHNN
Korean Medical Education Review 2023;25(1):68-77
Basic medical education is important for developing the competencies of medical doctors, and it includes basic biomedical sciences, preventive medicine, medical ethics, and clinical science. This study aimed to reveal the current status of the Korean Medical Licensing Examination (KMLE) regarding its evaluation of competencies in basic biomedical sciences. The basic science-related questions were screened and selected from the test forms of the KMLE (2016–2018) by personnel conducting basic biomedical science education, and the selected questions were evaluated with three independent groups of undergraduate students at Chonnam National University Medical School in terms of the learning outcomes of basic medical education. The study scope includes the proportion of basic medicine-related questions, which consist of basic medicine questions and basic medicine-related clinical medicine questions, and its annual change, discipline distribution, and associated learning outcomes. The average proportions of basic biomedical sciences, preventive medicine and medical law, and clinical sciences were 2.3%, 5.8%, and 91.9% of all questions, respectively. The proportion of basic medicine-related questions, except those on preventive medicine and medical law, was 22.0% of the total, and questions on pharmacology and microbiology accounted for 83.0% of the basic medicine-related questions. The proportion of sub-enabling learning outcomes linked with basic medicine-related questions comprised 14.0% of the total outcomes for basic biomedical sciences and 30.4% for preventive medicine and medical law. It is concluded that the KMLE questions may not sufficiently cover the essential competencies of basic medical education for medical doctors, and the KMLE may need to be improved with regard to competencies in basic biomedical sciences.
9.Role of Protein kinase C in Desensitization of Somatostatin-induced Calcium Signalling in NG108-15 Cells.
Kyoung Mi KIM ; Jong Ho SUNG ; Myung Jun KIM ; Duck Joo RHIE ; Yang Hyeok JO ; Sang June HAHN ; Myung Suk KIM ; Shin Hee YOON ; Bu Seung KIM
Journal of Korean Society of Endocrinology 2005;20(4):353-361
BACKGROUND: Activation of G-protein coupled-somatostatin receptors induces the release of calcium from inositol 1, 4, 5-trisphosphate-sensitive intracelluar stores. G-protein-coupled receptor signaling decreases with prolonged exposure to an agonist. SEBJECTS and METHODS: Fura-2-based digital Ca2+ imaging was used to study the effects of prolonged exposure to an agonist on the somatostatin-induced intracellular Ca2+ concentration([Ca2+]i) increases in NG108-15 cells, which were differentiated with CO2-independent medium and 10micrometer forskolin. RESULTS: Exposure to somatostatin(1micrometer) for 30 min completely desensitized the NG108-15 cells to a second somatostatin-induced response. The cells recovered gradually over 20 min following washout of the somatostatin. The desensitization was not due to depletion of the intracellular Ca2+ stores, and pretreatment for 30 min with bradykinin(100nM), which activates phospholipase C, or DADLE(D-Ala2-D-Leu5 enkephalin, 1microM), which activates phospholipase C, failed to cross-desensitize the somatostatin-evoked [Ca2+]i increases. Treatment with 8-cpt-cAMP(0.1mM) for 30min did not influence the somatostatin-induced[Ca2+]i increases. Phorbol 12, 13-dibutyrate(PdBu, 1microM) blocked the response completely. Down-regulation of PKC due to 24 h exposure of PdBu (1microM) inhibited the somatostatin-induced desensitization. CONCLUSION: Prolonged exposure of somatostatin to NG108-15 cells desensitized the somatostatin-induced release of Ca2+ from the intracelluar store, with protein kinase C also involved in the desensitization.
Calcium*
;
Colforsin
;
Down-Regulation
;
Enkephalins
;
GTP-Binding Proteins
;
Inositol
;
Protein Kinase C*
;
Protein Kinases*
;
Somatostatin
;
Type C Phospholipases
10.The Effect of Epicatechin on the High Glucose-induced TSP-1 Expression and MMP-2 Activity in Rat Vascular Smooth Muscle Cells.
Gyeong Ryul RYU ; Jung Hoon KANG ; Kyong Ja HONG ; In Kyung JEONG ; Hwa In JANG ; Duck Joo RHIE ; Shin Hee YOON ; Sang June HAHN ; Myung Suk KIM ; Yang Hyeok JO ; Myung Jun KIM
Journal of Korean Society of Endocrinology 2006;21(4):302-310
BACKGROUND: The incidence of atherosclerosis is well correlated with the progression of type 2 diabetes mellitus. High plasma glucose in uncontrolled diabetic patients evokes many vascular complications such as atherosclerosis. Specifically, high glucose was reported to induce thrombospondin-1 (TSP-1), which activates matrix metalloproteinase-2 (MMP-2) and leads to the invasion of vascular smooth muscle cells (VSMCs) into the intima. Catechins with antioxidant effects are known to inhibit MMP-2 activity. Therefore, this study was aimed at revealing the effect of epicatechin, one of catechins, on high glucose-induced TSP-1 and the invasiveness of VSMCs. METHODS: VSMCs were primarily isolated from Sprague-Dawley rat aorta. The VSMCs were incubated with different doses (30, 100 and 300 micrometer) of epicatechin under high glucose concentration (30 mM). The TSP-1 protein and mRNA expressions were analyzed by performing Western blotting and Northern blot analyses, respectively. RT-PCR was performed to observe the MMP-2 mRNA expression. Gelatin zymography was performed for the measurement of MMP-2 activity. Invasion assays were performed to evaluate the invasiveness of VSMCs. RESULTS: Epicatechin inhibited the high glucose-induced TSP-1 expression and the MMP-2 activity in a dose-dependent manner. Also, epicatechin inhibited the high glucose-induced invasiveness of VSMCs across the matrix barrier in a dose-dependent fashion. CONCLUSION: Collectively, epicatechin may prevent the high glucose-induced proliferation and invasion of VSMCs by inhibiting the TSP-1 expression and the MMP-2 activity. Therefore, epicatechin appears to play a protective role in the development of atherosclerosis.
Animals
;
Antioxidants
;
Aorta
;
Atherosclerosis
;
Blood Glucose
;
Blotting, Northern
;
Blotting, Western
;
Catechin*
;
Diabetes Mellitus, Type 2
;
Gelatin
;
Glucose
;
Humans
;
Incidence
;
Matrix Metalloproteinase 2
;
Muscle, Smooth, Vascular*
;
Rats*
;
Rats, Sprague-Dawley
;
RNA, Messenger
;
Thrombospondin 1*