1.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
2.Interferon-λ1 improves glucocorticoid resistance caused by respiratory syncytial virus by regulating the p38 mitogen-activated protein kinase signaling pathway.
Li PENG ; Yao LIU ; Fang-Cai LI ; Xiao-Fang DING ; Xiao-Juan LIN ; Tu-Hong YANG ; Li-Li ZHONG
Chinese Journal of Contemporary Pediatrics 2025;27(8):1011-1016
OBJECTIVES:
To investigate the effect of interferon-λ1 (IFN-λ1) on glucocorticoid (GC) resistance in human bronchial epithelial cells (HBECs) stimulated by respiratory syncytial virus (RSV).
METHODS:
HBECs were divided into five groups: control, dexamethasone, IFN-λ1, RSV, and RSV+IFN-λ1. CCK-8 assay was used to measure the effect of different concentrations of IFN-λ1 on the viability of HBECs, and the sensitivity of HBECs to dexamethasone was measured in each group. Quantitative real-time PCR was used to measure the mRNA expression levels of p38 mitogen-activated protein kinase (p38 MAPK), glucocorticoid receptor (GR), and MAPK phosphatase-1 (MKP-1). Western blot was used to measure the protein expression level of GR in cell nucleus and cytoplasm, and the nuclear/cytoplasmic ratio of GR was calculated.
RESULTS:
At 24 and 72 hours, the proliferation activity of HBECs increased with the increase in IFN-λ1 concentration in a dose- and time-dependent manner (P˂0.05). Compared with the RSV group, the RSV+IFN-λ1 group had significant reductions in the half-maximal inhibitory concentration of dexamethasone and the mRNA expression level of p38 MAPK (P<0.05), as well as significant increases in the mRNA expression levels of GR and MKP-1, the level of GR in cell nucleus and cytoplasm, and the nuclear/cytoplasmic GR ratio (P<0.05).
CONCLUSIONS
IFN-λ1 can inhibit the p38 MAPK pathway by upregulating MKP-1, promote the nuclear translocation of GR, and thus ameliorate GC resistance in HBECs.
Humans
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Glucocorticoids/pharmacology*
;
Receptors, Glucocorticoid/analysis*
;
Dual Specificity Phosphatase 1/physiology*
;
Dexamethasone/pharmacology*
;
Drug Resistance/drug effects*
;
Respiratory Syncytial Viruses
;
Interferons/pharmacology*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Signal Transduction/drug effects*
;
Cells, Cultured
3.NRF2 nuclear translocation and interaction with DUSP1 regulate the osteogenic differentiation of murine mandibular osteoblasts stimulated with Porphyromonas gingivalis lipopolysaccharide.
Xufei YU ; Jiaqi BAO ; Yingming WEI ; Yuting YANG ; Wenlin YUAN ; Lili CHEN ; Zhongxiu WANG
Journal of Zhejiang University. Science. B 2025;26(9):881-896
BACKGROUND: Periodontitis is characterized by alveolar bone resorption, aggravated by osteoblast dysfunction, and associated with intracellular oxidative stress linked to the nuclear factor erythroid 2-related factor 2 (NRF2) level. We evaluated the molecular mechanism of periodontitis onset and development and the role of NRF2 in osteogenic differentiation. METHODS: Primary murine mandibular osteoblasts were extracted and exposed to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) or other stimuli. Reactive oxygen species (ROS) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining were used to detect intracellular oxidative stress. Alkaline phosphatase staining and alizarin red S staining were used to detect the osteogenic differentiation of osteoblasts. Immunofluorescence and western blotting were used to determine the changes in the mitogen-activated protein kinase (MAPK) pathway and related molecule activities. Immunofluorescence colocalization and co-immunoprecipitation were performed to examine the nuclear translocation of NRF2 and its interaction with dual-specific phosphatase 1 (DUSP1) in cells. RESULTS: Ligated tissue samples showed higher alveolar bone resorption rate and lower NRF2 level than healthy periodontal tissue samples. Pg-LPS increased intracellular oxidative stress levels and inhibited osteogenic differentiation, whereas changes in NRF2 expression were correlated with changes in the oxidative stress and osteogenesis rate. NRF2 promoted the dephosphorylation of the MAPK pathway by nuclear translocation and the upregulation of DUSP1 expression, thus enhancing the osteogenic differentiation capacity of mandibular osteoblasts. The interaction between NRF2 and DUSP1 was observed. CONCLUSIONS: NRF2 and its nuclear translocation can regulate the osteogenic differentiation of mandibular osteoblasts under Pg-LPS conditions by interacting with DUSP1 in a process linked to the MAPK pathway. These findings form the basis of periodontitis treatment.
Animals
;
NF-E2-Related Factor 2/physiology*
;
Lipopolysaccharides/pharmacology*
;
Osteoblasts/drug effects*
;
Mice
;
Porphyromonas gingivalis/chemistry*
;
Cell Differentiation
;
Osteogenesis
;
Dual Specificity Phosphatase 1/metabolism*
;
Mandible/cytology*
;
Reactive Oxygen Species/metabolism*
;
Oxidative Stress
;
Periodontitis/metabolism*
;
Cells, Cultured
;
Male
;
Cell Nucleus/metabolism*
4.Impact of Folic Acid on the Resistance of Non-small Cell Lung Cancer Cells to Osimertinib by Regulating Methylation of DUSP1.
Chinese Journal of Lung Cancer 2024;26(12):881-888
BACKGROUND:
Drug resistance is the main cause of high mortality of lung cancer. This study was conducted to investigate the effect of folic acid (FA) on the resistance of non-small cell lung cancer (NSCLC) cells to Osimertinib (OSM) by regulating the methylation of dual specificity phosphatase 1 (DUSP1).
METHODS:
The OSM resistant NSCLC cell line PC9R was establishd by gradually escalation of OSM concentration in PC9 cells. PC9R cells were randomly grouped into Control group, OSM group (5 μmol/L OSM), FA group (600 nmol/L FA), methylation inhibitor decitabine (DAC) group (10 μmol/L DAC), FA+OSM group (600 nmol/L FA+5 μmol/L OSM), and FA+OSM+DAC group (600 nmol/L FA+5 μmol/L OSM+10 μmol/L DAC). CCK-8 method was applied to detect cell proliferation ability. Scratch test was applied to test the ability of cell migration. Transwell assay was applied to detect cell invasion ability. Flow cytometry was applied to measure and analyze the apoptosis rate of cells in each group. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method was applied to detect the expression level of DUSP1 mRNA in cells. Methylation specific PCR (MSP) was applied to detect the methylation status of the DUSP1 promoter region in each group. Western blot was applied to analyze the expression levels of DUSP1 protein and key proteins in the DUSP1 downstream mitogen-activated protein kinase (MAPK) signaling pathway in each group.
RESULTS:
Compared with the Control group, the cell OD450 values (48 h, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of extracellular regulated protein kinases (ERK) were obviously increased (P<0.05); the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the DAC group were obviously increased (P<0.05); the apoptosis rate, the expression of p38 MAPK protein, the phosphorylation level of ERK, and the methylation level of DUSP1 were obviously reduced (P<0.05). Compared with the OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM group were obviously decreased (P<0.05); the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously increased (P<0.05). Compared with the FA+OSM group, the cell OD450 values (48, 72 h), scratch healing rate, number of cell invasions, and expression of DUSP1 in the FA+OSM+DAC group were obviously increased; the apoptosis rate, the methylation level of DUSP1, the expression of p38 MAPK protein, and the phosphorylation level of ERK were obviously reduced (P<0.05).
CONCLUSIONS
FA may inhibit DUSP1 expression by enhancing DUSP1 methylation, regulate downstream MAPK signal pathway, then promote apoptosis, inhibit cell invasion and metastasis, and ultimately reduce OSM resistance in NSCLC cells.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Dual Specificity Phosphatase 1/pharmacology*
;
Cell Proliferation
;
p38 Mitogen-Activated Protein Kinases/pharmacology*
;
Methylation
;
Apoptosis
;
Cell Line, Tumor
5.Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.
Na HE ; Qi-Hai GONG ; Feng ZHANG ; Jing-Yi ZHANG ; Shu-Xian LIN ; Hua-Hua HOU ; Qin WU ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(5):359-365
OBJECTIVETo investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms.
METHODSCardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca]) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis.
RESULTSCompared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca]) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca] concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05).
CONCLUSIONEvo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca]i concentration, and inhibition of CaN and ERK-2 signal transduction pathways.
Angiotensin II ; Animals ; Atrial Natriuretic Factor ; metabolism ; Calcineurin ; genetics ; metabolism ; Calcium ; metabolism ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Hypertrophy ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Quinazolines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
6.Effects of Glucocorticoid-Induced Transcript 1 Gene Deficiency on Glucocorticoid Activation in Asthmatic Mice.
Cheng-Ping HU ; Qiu-Fen XUN ; Xiao-Zhao LI ; Xin-Yue HU ; Ling QIN ; Ruo-Xi HE ; Jun-Tao FENG
Chinese Medical Journal 2018;131(23):2817-2826
Background:
Glucocorticoid (GC) is the first-line therapy for asthma, but some asthmatics are insensitive to it. Glucocorticoid-induced transcript 1 gene (GLCCI1) is reported to be associated with GCs efficiency in asthmatics, while its exact mechanism remains unknown.
Methods:
A total of 30 asthmatic patients received fluticasone propionate for 12 weeks. Forced expiratory volume in 1 s (FEV) and GLCCI1 expression were detected. Asthma model was constructed in wild-type and GLCCI1 knockout (GLCCI1) mice. Glucocorticoid receptor (GR) and mitogen-activated protein kinase phosphatase 1 (MKP-1) expression were detected by polymerase chain reaction and Western blotting (WB). The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was also detected by WB.
Results:
In asthmatic patients, the change of FEV was well positively correlated with change of GLCCI1 expression (r = 0.430, P = 0.022). In animal experiment, GR and MKP-1 mRNA levels were significantly decreased in asthmatic mice than in control mice (wild-type: GR: 0.769 vs. 1.000, P = 0.022; MKP-1: 0.493 vs. 1.000, P < 0.001. GLCCI1: GR: 0.629 vs. 1.645, P < 0.001; MKP-1: 0.377 vs. 2.146, P < 0.001). Hydroprednisone treatment significantly increased GR and MKP-1 mRNA expression levels than in asthmatic groups; however, GLCCI1 asthmatic mice had less improvement (wild-type: GR: 1.517 vs. 0.769, P = 0.023; MKP-1: 1.036 vs. 0.493, P = 0.003. GLCCI1: GR: 0.846 vs. 0.629, P = 0.116; MKP-1: 0.475 vs. 0.377, P = 0.388). GLCCI1 asthmatic mice had more obvious phosphorylation of p38 MAPK than wild-type asthmatic mice (9.060 vs. 3.484, P < 0.001). It was still higher even though after hydroprednisone treatment (6.440 vs. 2.630, P < 0.001).
Conclusions:
GLCCI1 deficiency in asthmatic mice inhibits the activation of GR and MKP-1 and leads to more obvious phosphorylation of p38 MAPK, leading to a decremental sensitivity to GCs.
Trial Registration
ChiCTR.org.cn, ChiCTR-RCC-13003634; http://www.chictr.org.cn/showproj.aspx?proj=5926.
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Dual Specificity Phosphatase 1
;
genetics
;
metabolism
;
Forced Expiratory Volume
;
genetics
;
physiology
;
Glucocorticoids
;
therapeutic use
;
Mice
;
Mice, Knockout
;
Phosphorylation
;
genetics
;
physiology
;
Receptors, Glucocorticoid
;
deficiency
;
genetics
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
7.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
8.The distribution of MAP kinase phosphatase-1 in the cerebrospinal fluid-contacting nucleus and its functional contribution to depressive behaviors.
Ping CHEN ; Qing-Song LIN ; Li-Cai ZHANG
Acta Physiologica Sinica 2015;67(1):90-96
The purpose of this research is to explore the distribution and expression of MAP kinase phosphatase-1 (MKP-1) in cerebrospinal fluid (CSF)-contacting nucleus in depression, and provide experimental evidence to reveal the biological function and regulatory mechanisms of CSF-contacting nucleus in depression. Depression model was produced by chronic forced swimming stress (CFSS) in Sprague-Dawley (SD) rats. Intracerebroventricular injection of cholera toxin subunit B (CTb) labeled with horseradish peroxidase (CB-HRP) was used to specifically mark distal CSF-contacting nucleus. The rate of animal growth and behavioral tests including sucrose preference test (SPT) and open field test (OFT) were used to validate the model of depression. The expressions of MKP-1 and fos proteins in CSF-contacting nucleus were detected by immunofluorescence. Software Image-Pro Plus version 6.0 was used to count the positive neurons. The results showed that, the distributions of MKP-1 were found in the CSF-contacting nucleus. After 28 days of swimming, the rats in stress group had a lower growth rate, a less consumption of sucrose and lower scores of OFT compared to control group. The number of neurons double labeled with CB-HRP/fos or CB-HRP/MKP-1 in stress group was significantly higher than that in control group (P < 0.01). These results suggest that the CSF-contacting nucleus may be involved in the process of depression via the MKP-1.
Animals
;
Cerebrospinal Fluid
;
Depression
;
enzymology
;
Dual Specificity Phosphatase 1
;
physiology
;
Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Stress, Physiological
9.Post-transcriptional regulation of dual-specificity phosphatase-1 by RNA-binding protein HuR T118 in heat shock.
Chuanli ZHANG ; Haihua LUO ; Yong JIANG
Journal of Southern Medical University 2014;34(6):766-770
OBJECTIVETo investigate the post-transcriptional regulation of dual-specificity phosphatase-1 (DUSP1) by the RNA- binding protein HuR in heat shock.
METHODSThe recombinant plasmids carrying wild-type (WT) HuR or its mutants at threonine 118 were constructed and transiently transfected into NIH 3T3 cells via liposome, and the changes in the expressions of DUSP1 mRNA and protein were detected by quantitative real-time PCR and Western blotting, respectively.
RESULTSHeat shock caused significantly enhanced phosphorylation of HuR at the residue T118. In 3T3 cells transfected with the plasmids carrying wild-type HuR for its over-expression showed significantly up-regulated DUSP1 mRNA and protein expressions at 24 h after transfection. Over-expression of HuR(T118A) down-regulated DUSP1 mRNA and protein expressions in cells challenged with heat shock, while HuR(T118E) over-expression significantly increased DISP1 expression at both mRNA and protein levels. After heat shock, HuR(WT) translocated from the cell nucleus to the cytoplasm to form particles. HuR(T118E) was diffusely distributed in the cytoplasm before heat shock and formed particles after heat shock. HuR(T118A) did not undergo such translocation in response to heat shock challenge.
CONCLUSIONHuR regulates DUSP1 mRNA and protein expression at the post-transcriptional level to increase its expression after heat shock by enhancing the phosphorylation HuR T118.
Animals ; Cell Nucleus ; Cytoplasm ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; ELAV Proteins ; metabolism ; Gene Expression Regulation ; Heat-Shock Response ; Hot Temperature ; Mice ; NIH 3T3 Cells ; Phosphorylation ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Transfection ; Up-Regulation
10.The inhibitory effects of dexamethasone on cisplatin induced apoptosis of human lung adenocarcinoma cell SPC-A1 and its molecular mechanism.
Journal of Biomedical Engineering 2014;31(3):652-656
The aim of this study is to investigate the apoptotic inhibition and its molecular mechanism of dexamethasone (DEX) acting on cisplatin (CDDP)-induced apoptosis of human lung adenocarcinoma cell SPC-A1; SPC-A1 cells were pre-cultured in vitro for 24 hours with DEX in different concentrations and then CDDP was added in different concentrations for culturing for further 48 hours. The survival rates of the cells were determined by MTT. The expression of serum/glucocorticoid-induced kinase (SGK-1) and mitogen-activated protein kinase phosphatase-1 (MKP-1) in SPC-A1 cells after being cultured by 1 micromol/l DEX at different time was detected by semi-quantitative RT-PCR technology. The expression of glucocorticoid receptor (GR) in SPC-A1 cells was measured by immunohistochemistry (IHC) with biotin-labeled anti-GR. The results of MTT showed that SPC-A1 cells had resistance to CDDP-induced apoptosis with pre-cultured DEX and the resistance intensity presented DEX concentration-dependent. The expressing quantity of SGK-1 in SPC-A1 cells stimulated by DEX could be elevated and increased with intention of time, but the express of MKP-1 was not detected. Up-regulated expression of GR in SPC-A1 cells stimulated by DEX was detected by IHC. The number of cells expressing GR in SPC-A1 cells was significantly higher than that in the control group. The results showed that DEX inhibited apoptosis of SPC-A1 cells induced by CDDP. The possible molecular mechanism is that elevated expression of GR induced by DEX up-regulates the expression of SGK-1 which locates at the downstream of anti-apoptosis pathway. The apoptosis resistance of SPC-A1 cells may account for all above the factors.
Adenocarcinoma
;
pathology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cisplatin
;
pharmacology
;
Dexamethasone
;
pharmacology
;
Dual Specificity Phosphatase 1
;
metabolism
;
Humans
;
Immediate-Early Proteins
;
metabolism
;
Lung Neoplasms
;
pathology
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Receptors, Glucocorticoid
;
metabolism
;
Up-Regulation

Result Analysis
Print
Save
E-mail