1.Effects of Glucocorticoid-Induced Transcript 1 Gene Deficiency on Glucocorticoid Activation in Asthmatic Mice.
Cheng-Ping HU ; Qiu-Fen XUN ; Xiao-Zhao LI ; Xin-Yue HU ; Ling QIN ; Ruo-Xi HE ; Jun-Tao FENG
Chinese Medical Journal 2018;131(23):2817-2826
Background:
Glucocorticoid (GC) is the first-line therapy for asthma, but some asthmatics are insensitive to it. Glucocorticoid-induced transcript 1 gene (GLCCI1) is reported to be associated with GCs efficiency in asthmatics, while its exact mechanism remains unknown.
Methods:
A total of 30 asthmatic patients received fluticasone propionate for 12 weeks. Forced expiratory volume in 1 s (FEV) and GLCCI1 expression were detected. Asthma model was constructed in wild-type and GLCCI1 knockout (GLCCI1) mice. Glucocorticoid receptor (GR) and mitogen-activated protein kinase phosphatase 1 (MKP-1) expression were detected by polymerase chain reaction and Western blotting (WB). The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was also detected by WB.
Results:
In asthmatic patients, the change of FEV was well positively correlated with change of GLCCI1 expression (r = 0.430, P = 0.022). In animal experiment, GR and MKP-1 mRNA levels were significantly decreased in asthmatic mice than in control mice (wild-type: GR: 0.769 vs. 1.000, P = 0.022; MKP-1: 0.493 vs. 1.000, P < 0.001. GLCCI1: GR: 0.629 vs. 1.645, P < 0.001; MKP-1: 0.377 vs. 2.146, P < 0.001). Hydroprednisone treatment significantly increased GR and MKP-1 mRNA expression levels than in asthmatic groups; however, GLCCI1 asthmatic mice had less improvement (wild-type: GR: 1.517 vs. 0.769, P = 0.023; MKP-1: 1.036 vs. 0.493, P = 0.003. GLCCI1: GR: 0.846 vs. 0.629, P = 0.116; MKP-1: 0.475 vs. 0.377, P = 0.388). GLCCI1 asthmatic mice had more obvious phosphorylation of p38 MAPK than wild-type asthmatic mice (9.060 vs. 3.484, P < 0.001). It was still higher even though after hydroprednisone treatment (6.440 vs. 2.630, P < 0.001).
Conclusions:
GLCCI1 deficiency in asthmatic mice inhibits the activation of GR and MKP-1 and leads to more obvious phosphorylation of p38 MAPK, leading to a decremental sensitivity to GCs.
Trial Registration
ChiCTR.org.cn, ChiCTR-RCC-13003634; http://www.chictr.org.cn/showproj.aspx?proj=5926.
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Dual Specificity Phosphatase 1
;
genetics
;
metabolism
;
Forced Expiratory Volume
;
genetics
;
physiology
;
Glucocorticoids
;
therapeutic use
;
Mice
;
Mice, Knockout
;
Phosphorylation
;
genetics
;
physiology
;
Receptors, Glucocorticoid
;
deficiency
;
genetics
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
2.The mitogen-activated protein kinase phosphatase-1 (MKP-1) gene is a potential methylation biomarker for malignancy of breast cancer.
Fang Ming CHEN ; Hsueh Wei CHANG ; Sheau Fang YANG ; Ya Fang HUANG ; Pei Yung NIEN ; Yao Tsung YEH ; Ming Feng HOU
Experimental & Molecular Medicine 2012;44(5):356-362
The mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) belongs to the MAPK cascades which are central to cell proliferation and apoptosis. The carcinogenic role of MKP-1 has been reported in many types of cancer but it has rarely been investigated in breast cancer. The present study was designed to evaluate the MKP-1 mRNA expression and its possible regulation by methylation of MKP-1 promoter in the model of several breast cancer cell lines and tissues as well as controls. Our data demonstrate MKP-1 mRNA expression significantly decreased in five breast cancer cell lines compared to breast controls (P < 0.01). Using the methylation-specific PCR (MSP) analysis, the unmethylated reaction (U) is dominant in both normal cell lines and benign breast tumors (100% vs. 86.2%), whereas the methylated reaction (M) is dominant in both breast cancer cell lines and invasive breast tumors (100% vs. 57.2%). In terms of methylation ratio (M/M+U), methylation level in MKP-1 promoter is significantly higher in the invasive breast tumor tissues (n = 152) than in benign breast tumor tissues (n = 29) (P < 0.0001). Assessing the methylation ratio of the promoter of MKP-1 gene to diagnose the breast malignancy (invasive vs. benign), the area under the receiver-operating characteristic (ROC) curve was 0.809 (95% CI: 0.711-0.906, P < 0.001). The best performance for this prediction has a sensitivity of 76.32% and a specificity of 82.76% at the cutoff value of 0.38. Taken together, we firstly demonstrated that the promoter methylation of MKP-1 gene is a potential breast cancer biomarker for breast malignancy.
*Breast Neoplasms/diagnosis/genetics/metabolism
;
Cell Line, Tumor
;
DNA Methylation/*genetics
;
Dual Specificity Phosphatase 1/genetics/*metabolism
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
*Promoter Regions, Genetic
;
ROC Curve
;
Sensitivity and Specificity
;
Tumor Markers, Biological
3.Post-transcriptional regulation of dual-specificity phosphatase-1 by RNA-binding protein HuR T118 in heat shock.
Chuanli ZHANG ; Haihua LUO ; Yong JIANG
Journal of Southern Medical University 2014;34(6):766-770
OBJECTIVETo investigate the post-transcriptional regulation of dual-specificity phosphatase-1 (DUSP1) by the RNA- binding protein HuR in heat shock.
METHODSThe recombinant plasmids carrying wild-type (WT) HuR or its mutants at threonine 118 were constructed and transiently transfected into NIH 3T3 cells via liposome, and the changes in the expressions of DUSP1 mRNA and protein were detected by quantitative real-time PCR and Western blotting, respectively.
RESULTSHeat shock caused significantly enhanced phosphorylation of HuR at the residue T118. In 3T3 cells transfected with the plasmids carrying wild-type HuR for its over-expression showed significantly up-regulated DUSP1 mRNA and protein expressions at 24 h after transfection. Over-expression of HuR(T118A) down-regulated DUSP1 mRNA and protein expressions in cells challenged with heat shock, while HuR(T118E) over-expression significantly increased DISP1 expression at both mRNA and protein levels. After heat shock, HuR(WT) translocated from the cell nucleus to the cytoplasm to form particles. HuR(T118E) was diffusely distributed in the cytoplasm before heat shock and formed particles after heat shock. HuR(T118A) did not undergo such translocation in response to heat shock challenge.
CONCLUSIONHuR regulates DUSP1 mRNA and protein expression at the post-transcriptional level to increase its expression after heat shock by enhancing the phosphorylation HuR T118.
Animals ; Cell Nucleus ; Cytoplasm ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; ELAV Proteins ; metabolism ; Gene Expression Regulation ; Heat-Shock Response ; Hot Temperature ; Mice ; NIH 3T3 Cells ; Phosphorylation ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Transfection ; Up-Regulation
4.Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.
Na HE ; Qi-Hai GONG ; Feng ZHANG ; Jing-Yi ZHANG ; Shu-Xian LIN ; Hua-Hua HOU ; Qin WU ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(5):359-365
OBJECTIVETo investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms.
METHODSCardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca]) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis.
RESULTSCompared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca]) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca] concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05).
CONCLUSIONEvo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca]i concentration, and inhibition of CaN and ERK-2 signal transduction pathways.
Angiotensin II ; Animals ; Atrial Natriuretic Factor ; metabolism ; Calcineurin ; genetics ; metabolism ; Calcium ; metabolism ; Dual Specificity Phosphatase 1 ; genetics ; metabolism ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Hypertrophy ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; metabolism ; Quinazolines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley
5.Effects of integrin alpha IIb(R995A) mutation on receptor affinity and pp125 (FAK) phosphorylation.
Xue-yuan TANG ; Zai-fu JIAN ; Guo-ping WANG ; Hong-hui YANG ; Wei LIU
Chinese Medical Sciences Journal 2004;19(4):276-281
OBJECTIVETo investigate the role of cytoplasmic domain of integrin alpha IIb in platelet signal transduction.
METHODSBinding capacity of integrin alpha IIb(R995A) to antibody platelet activation complex-1 (PAC-1) and pp125 focal adhesion kinase (FAK) phosphorylation of cells were detected by flow cytometry, immune precipitation, and Western blotting.
RESULTSWithout activation, wild-type alpha IIb beta3 Chinese hamster ovary (CHO) cells failed to bind to PAC-1, but mutant chimera alpha IIb(R995A)beta3 CHO cells were able to bind with PAC-1. Furthermore, phosphorylation of pp125 (FAK) in wild-type alpha IIb beta3 CHO cells occured only when cells were adhered to fibrinogen, but could not be detected in bovine serum albumin suspension. However in the mutant chimera group, it could be detected in both conditions.
CONCLUSIONThe mutation in integrin alpha IIb(R995A) alters its affinity state as a receptor, thus also mediating cytoplasmic signal transduction leading to the phosphorylation of pp125 (FAK) without ligand binding.
Animals ; Blood Platelets ; metabolism ; CHO Cells ; Cell Adhesion ; Cricetinae ; Cricetulus ; Cytoplasm ; metabolism ; Dual Specificity Phosphatase 2 ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Humans ; Phosphorylation ; Platelet Glycoprotein GPIIb-IIIa Complex ; genetics ; metabolism ; physiology ; Point Mutation ; Protein Phosphatase 2 ; Protein Tyrosine Phosphatases ; metabolism ; Protein-Tyrosine Kinases ; metabolism ; Signal Transduction ; Transfection
6.12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity.
Jin Wook LEE ; Ho Cheol RYU ; Yee Ching NG ; Cheolmin KIM ; Jun Dong WEI ; Vikineswary SABARATNAM ; Jae Hong KIM
Experimental & Molecular Medicine 2012;44(6):378-386
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-kappaB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-kappaB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.
Anti-Inflammatory Agents, Non-Steroidal/pharmacology
;
Cell Line
;
Dual Specificity Phosphatase 1/biosynthesis/genetics
;
Enzyme Activation
;
Fatty Acids, Unsaturated/*pharmacology
;
Humans
;
Interleukin-6/*biosynthesis
;
Keratinocytes/*metabolism/radiation effects
;
NF-kappa B/metabolism
;
RNA Interference
;
RNA, Small Interfering
;
Receptors, Leukotriene B4/genetics
;
Signal Transduction/drug effects
;
Skin Diseases/drug therapy
;
*Ultraviolet Rays
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism
7.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
8.SHP2 and MKP5 in P2Y purinergic receptor-mediated prostate cancer invasion.
Hui-ying HE ; Jie ZHENG ; Yan LI ; Wan-jie HENG ; Wei-gang FANG
Chinese Journal of Pathology 2005;34(5):288-292
OBJECTIVETo investigate the effects of protein tyrosine phosphatase-SHP2 and dual-specificity MAPK phosphatase-MKP5 on the activation of MAPKs and cell invasion induced by P2Y purinergic receptor in human prostate cancer cell lines with different metastatic potentials.
METHODSThe wide type (-wt) SHP2, mutant type (-cs) SHP2 and wide type (-wt) MKP5 cDNA expression vectors were constructed and stably transfected into 1E8 cells (highly metastatic) and/or 2B4 cells (non-metastatic). The tyrosine phosphorylation of SHP2 was examined by immunoprecipitation. The activation of ERK1/2 and p38 induced by P2Y receptor agonist ATP was analyzed by Western blot with phospho-specific antibodies against the dually phosphorylated, active forms of ERK1/2 and p38. The in-vitro invasive ability through Matrigel was measured by boyden-chamber assay.
RESULTSATP induced significant SHP2 phosphorylation, which was stronger and lasted longer in 1E8 than in 2B4. SHP2-wt enhanced the ERK1/2 activation induced by ATP in 2B4 cells, while SHP2-cs delayed and decreased this effect in 1E8 cells. Both SHP2-wt and SHP2-cs had no obvious influence on p38 activation. ATP stimulated cell invasion of both 1E8 and 2B4, while transfection of SHP2-wt into 2B4 cells further increased the invasive-stimulating ability of ATP (18.7% increase compared with ATP treatment alone). Transfection of SHP2-cs into 1E8 cells, however, antagonized the invasive-stimulating ability of ATP (40.9% decrease compared with ATP treated group). Up-regulation of MKP5-wt inhibited phosphorylation of p38 by ATP and reduced cell invasion stimulated by ATP (22.4% and 28.7% decrease compared with ATP treated group of 1E8 and 2B4, respectively).
CONCLUSIONSBoth SHP2 and MKP5 play some roles in P2Y receptor-mediated activation of MEK/ERK, p38 signaling pathways and prostate cancer invasion. SHP2 positively regulates ERK activation and prostate cancer invasion, whereas MKP5 inhibits the invasion by suppressing p38 activation.
Adenosine Triphosphate ; pharmacology ; Cell Line, Tumor ; DNA, Complementary ; genetics ; Dual-Specificity Phosphatases ; Genetic Vectors ; Humans ; Intracellular Signaling Peptides and Proteins ; genetics ; metabolism ; Male ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Mitogen-Activated Protein Kinase Phosphatases ; Neoplasm Invasiveness ; Phosphorylation ; Prostatic Neoplasms ; metabolism ; pathology ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatases ; genetics ; metabolism ; Receptors, Purinergic P2 ; physiology ; Signal Transduction ; Transfection ; p38 Mitogen-Activated Protein Kinases ; metabolism