1.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
2.Pharmacokinetics study of Dayuanyin in normal and febrile rats.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Jun ZHANG ; Xin-Rui LI ; Yu-Qing WANG ; Ming SU ; Xin-Ru SUN ; Hui ZHANG ; Bo-Yang WANG ; Li-Jie WANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(2):527-533
Based on the pharmacokinetics theory, this study investigated the pharmacokinetic characteristics of albiflorin, paeoniflorin, wogonoside, and wogonin in normal and febrile rats and summarized absorption and elimination rules of Dayuanyin in them to provide reference for further development and clinical application of Dayuanyin. Blood samples were taken from the fundus venous plexus of normal and model rats after intragastric administration of Dayuanyin at different time points. The concentration of each substance in blood was determined by ultra performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS) technique at different time points. DAS 2.0, a piece of pharmacokinetics software, was used to calculate the pharmacokinetic parameters of each component. The results show that the 4 components had good linear relationship in their respective ranges, and the results of methodological investigation met the requirements. The pharmacokinetic parameters of C_(max), T_(max), t_(1/2), AUC_(0-t), AUC_(0-∞), and MRT_(0-t) were calculated by the DAS 2.0 non-compartmental model. Compared with those in the normal group, C_(max) and AUC_(0-t) of the 4 components in the model group were significantly increased. There were significant differences in the pharmacokinetic characteristics between the normal and model groups, suggesting that the absorption and elimination of Dayuanyin may be affected by the changes of internal environment of the body in different physiological states.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Fever/metabolism*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Glucosides/pharmacokinetics*
;
Monoterpenes
3.Pharmacokinetics and tissue distribution of fluorescent-labeled Astragalus polysaccharides in mice.
Xiao-Huan WANG ; Peng-Xin LI ; Ting-Ting GONG ; Yun-Qian LU ; Bo YANG ; Xiang-Tao WANG
China Journal of Chinese Materia Medica 2025;50(7):1959-1968
In this study, the reductive amination method was used to label IR783 on Astragalus polysaccharides(APS) for the first time, which was verified by ultraviolet-visible spectroscopy and infrared spectroscopy. Quantitative analysis methods of APS-IR783 in plasma and various tissue were established using a multifunctional microplate reader. The pharmacokinetics and tissue distribution of APS-IR783 in mice were investigated after a single intravenous injection of 30 mg·kg~(-1) APS-IR783, and pharmacokinetic parameters were calculated using DAS 2.0 software. The results showed that the APS used had a mass fraction of 93.69%, a relative molecular weight of 1.55×10~5, and a polydispersity index(PDI, M_w/M_n) of 1.73, close to a homogeneous polysaccharide. The IR783 labeling yield reached 86.50%, and the content of IR783 in APS-IR783 was 0.72%. After a single intravenous injection of 30 mg·kg~(-1), the pharmacokinetic parameters of APS in mouse plasma were as follows: T_(max) was(0.67±0.26) h; C_(max) was(1 599.29±159.30) mg·L~(-1); T_(1/2α) and T_(1/2β) were(2.29±3.06) h and(0.44±0.05) h, respectively; AUC_(0-t) was(23 398.91±2 907.03) mg·h·L~(-1); AUC_(0-∞) was(27 710.55±3 506.55) mg·h·L~(-1); MRT_(0-∞) was(34.38±12.59) h; CL was 0.001 L·h~(-1)·kg~(-1); V_z was(0.042±0.017) L·kg~(-1). The in vivo biodistribution study demonstrated that the in vivo exposure ratios of APS in different tissue were in the following order: spleen > liver > kidney > lung > heart > small intestine > muscle > large intestine > brain > stomach, where the top five tissue accounted for 87.54% of the total area under the curve(AUC). This study successfully labeled APS with a water-soluble near-infrared fluorescent probe of IR783 for the first time and revealed the pharmacokinetics and tissue distribution of APS in mice. The paper provides detailed in vivo behavior of APS after intravenous injection, which lays the foundation for the development and utilization of APS and related natural medicines.
Animals
;
Mice
;
Polysaccharides/chemistry*
;
Tissue Distribution
;
Astragalus Plant/chemistry*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Fluorescent Dyes/pharmacokinetics*
;
Female
4.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
5.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
6.Applications of artificial intelligence in the research of molecular mechanisms of traditional Chinese medicine formulas.
Hongyu CHEN ; Ruotian TANG ; Mei HONG ; Jing ZHAO ; Dong LU ; Xin LUAN ; Guangyong ZHENG ; Weidong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1329-1341
Traditional Chinese medicine formula (TCMF) represents a fundamental component of Chinese medical practice, incorporating medical knowledge and practices from both Han Chinese and various ethnic minorities, while providing comprehensive insights into health and disease. The foundation of TCMF lies in its holistic approach, manifested through herbal compatibility theory, which has emerged from extensive clinical experience and evolved into a highly refined knowledge system. Within this framework, Chinese herbal medicines exhibit intricated characteristics, including multi-component interactions, diverse target sites, and varied biological pathways. These complexities pose significant challenges for understanding their molecular mechanisms. Contemporary advances in artificial intelligence (AI) are reshaping research in traditional Chinese medicine (TCM), offering immense potential to transform our understanding of the molecular mechanisms underlying TCMFs. This review explores the application of AI in uncovering these mechanisms, highlighting its role in compound absorption, distribution, metabolism, and excretion (ADME) prediction, molecular target identification, compound and target synergy recognition, pharmacological mechanisms exploration, and herbal formula optimization. Furthermore, the review discusses the challenges and opportunities in AI-assisted research on TCMF molecular mechanisms, promoting the modernization and globalization of TCM.
Artificial Intelligence
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Humans
;
Medicine, Chinese Traditional
;
Animals
7.Pharmacokinetics and tissue distribution of four alkaloids in Ermiao Pills and Sanmiao Pills in normal and arthritic model rats.
Bing-Jie LI ; Wen-Jing GE ; Peng-Tao SHAN ; Hui-Sen WANG ; Ming LIU ; Geng-Sheng LI ; Rui-Feng LIANG
China Journal of Chinese Materia Medica 2023;48(7):1943-1950
This work aimed to investigate the differences of pharmacokinetics and tissue distribution of four alkaloids in Ermiao Pills and Sanmiao Pills in normal and arthritic model rats. The rat model of arthritis was established by injecting Freund's complete adjuvant, and ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) in the positive ion multiple reaction monitoring(MRM) mode was used for the determination of four alkaloids in plasma and tissues of normal and arthritic rats after administration of Ermiao Pills and Sanmiao Pills, respectively. The differences in pharmacokinetics and tissue distribution of the four active components were compared, and the effect of Achyranthis Bidentatae Radix on the major components of Sanmiao Pills was explored. This study established an UPLC-MS/MS for simultaneous determination of four alkaloids, and the specificity, linearity, accuracy, precision, and stability of this method all met the requirements. Pharmacokinetics study found that as compared with normal rats, the AUC and C_(max) of phellodendrine, magnoflorine, berberine and palmatine in model rats were significantly decreased after administration of Ermiao Pills, the clearance rate CL/F was significantly increased, and the distribution and tissue/plasma concentration ratio of the four alkaloids in the liver, kidney, and joint were significantly reduced. Achyranthis Bidentatae Radix increased the AUC of phellodendrine, berberine, and palmatine, reduced the clearance rate, and significantly increased the distribution of the four alkaloids in the liver, kidney, and joints in arthritic rats. However, it had no significant effect on the pharmacokinetics and tissue distribution of the four alkaloids in normal rats. These results suggest that Achyranthis Bidentatae Radix may play a guiding role in meridian through increasing the tissue distribution of effective components in Sanmiao Pills under arthritis states.
Rats
;
Animals
;
Berberine/pharmacokinetics*
;
Tissue Distribution
;
Chromatography, Liquid
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Alkaloids/pharmacokinetics*
;
Chromatography, High Pressure Liquid/methods*
;
Arthritis
8.Determination of eight active components of Bufei Huoxue Capsules in rat plasma and their pharmacokinetics by UHPLC-MS/MS.
Hui REN ; Sheng GUO ; Yi-Ying ZHANG ; Quan LI ; Heng-Bin WANG ; Wan-Li GENG ; Er-Xin SHANG ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2022;47(1):215-223
An ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method was established to investigate the pharmacokinetic behaviors of psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, psoralen, isopsoralen, methylnissolin, and neobavaisoflavone in rat plasma after oral administration of Bufei Huoxue Capsules. After SD rats were administered with Bufei Huoxue Capsules suspension by gavage, blood samples were collected from the inner canthus at different time points. After protein precipitation, plasma samples were separated on ACQUITY UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm). The mobile phase consisted of acetonitrile(A) and water(B) containing 0.1% formic acid in gradient elution. The positive and negative ions were measured simultaneously in the multi-reaction monitoring(MRM) mode. The pharmacokinetic parameters were calculated and fitted by DAS 3.2.8. Psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, psoralen, isopsoralen, methylnissolin, and neobavaisoflavone were detected in the rat plasma after drug administration, with AUC_(0-t) of(3 357±1 348),(3 555±1 696),(3.03±0.88),(2.21±0.33),(1 787±522),(2 295±539),(5.69±1.41) and(3.40±0.75) μg·L~(-1)·h, and T_(max) of(1.56±0.62),(1.40±0.70),(0.21±0.05),(0.25±0.12),(0.26±0.11),(0.34±0.29),(0.74±0.59), and 0.25 h. The method is proved specific and repeatable and is suitable for the determination of psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, pso-ralen, isopsoralen, methylnissolin, and neobavaisoflavone in the rat plasma, which can be applied to pharmacokinetic study.
Animals
;
Capsules
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rats
;
Rats, Sprague-Dawley
;
Reproducibility of Results
;
Tandem Mass Spectrometry/methods*
9.Pharmacokinetic study of Polydopamine Guttate Pills loaded with active components of Sarcandrae Herba in rats.
Xi-Tong WANG ; Jia-Yu ZOU ; Yu-Tong WANG ; Rui CHEN ; Heng LIU ; Lin-Wei CHEN ; Yi GU ; De-Xiong DAI ; Xin XU ; Zhi-Peng CHEN
China Journal of Chinese Materia Medica 2022;47(16):4462-4468
An ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method was established for the determination of active components of Sarcandrae Herba, and applied to the pharmacokinetics study of multiple dosage forms. After SD rats were administered by gavage with three dosage forms [Sarcandrae Herba extract, commercial Sarcandrae Herba Guttate Pills, and polydopamine guttate pills loaded with active components of Sarcandrae Herba(PDA-Sg Guttate Pills)], blood samples were collected from the inner canthus at different time points. After protein precipitation, plasma samples were separated on ACQUITY UPLC C_(18) column(2.1 mm×100 mm, 1.7 μm). The mobile phase consisted of water containing 0.2% formic acid and acetonitrile in gradient elution. The negative ions were measured simultaneously in the multi-reaction monitoring(MRM) mode. The pharmacokinetic parameters were calculated and fitted by DAS 2.0. All four components could be detected in the plasma of rats in each group at each time point except the neochlorogenic acid and cryptochlorogenic acid in the Sarcandrae Herba extract group. The guttate pills group showed a significant increase in drug content at each time point. The exposure of the main components of Sarcandrae Herba in blood was effectively increased by PDA-drug loading effect in PDA-Sg Guttate Pills(The AUC_(0-24 h) of neochlorogenic acid, cryptochlorogenic acid, isaziridin and rosmarinic acid reached 2.45, 32.90, 1.54, 4.81 times that of the commercial guttate pills). This study proves the measurability of the above-mentioned multi-component in vitro-in vivo delivery process. The pharmacokinetic study has shown that PDA-Sg Guttate Pills can effectively delay the elimination time and improve the bioavailability of the four components, which can provide theoretical data for the production of the drug.
Animals
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Indoles
;
Polymers
;
Rats
;
Rats, Sprague-Dawley
;
Reproducibility of Results
;
Tandem Mass Spectrometry/methods*
10.Comprehensive profiling and characterization of the absorbed components and metabolites in mice serum and tissues following oral administration of Qing-Fei-Pai-Du decoction by UHPLC-Q-Exactive-Orbitrap HRMS.
Wei LIU ; Jian HUANG ; Feng ZHANG ; Cong-Cong ZHANG ; Rong-Sheng LI ; Yong-Li WANG ; Chao-Ran WANG ; Xin-Miao LIANG ; Wei-Dong ZHANG ; Ling YANG ; Ping LIU ; Guang-Bo GE
Chinese Journal of Natural Medicines (English Ed.) 2021;19(4):305-320
Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.
Administration, Oral
;
Alkaloids/analysis*
;
Animals
;
COVID-19
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Flavonoids/analysis*
;
Mice
;
SARS-CoV-2
;
Saponins/analysis*
;
Triterpenes/analysis*

Result Analysis
Print
Save
E-mail