1.Transforming of the drug resistance plasmid from Staphylococcus aureus into Escherichia coli.
Wan-kelan LI ; Hong JIANG ; Yong-fen HUANG ; Xue-qin WAN
Journal of Southern Medical University 2010;30(11):2482-2484
OBJECTIVETo discuss the possible mechanism of drug resistance transmission between Staphylococcus and Escherichia coli.
METHODSThe chloramphenicol resistance plasmid of Staphylococcus aureus was extracted to transform the sensitive Escherichia coli, and the drug-resistant Escherichia coli were screened by drug sensitivity test.
RESULTSThe drug-resistant Escherichia coli were successfully obtained.
CONCLUSIONStaphylococcus may have a natural shuttle plasmid of drug resistance, which can transform Escherichia coli under specific conditions.
Drug Resistance, Bacterial ; genetics ; Escherichia coli ; drug effects ; genetics ; Plasmids ; Staphylococcus ; genetics ; Transformation, Bacterial
2.Helicobacter pylori infection: an overview in 2013, focus on therapy.
Chinese Medical Journal 2014;127(3):568-573
OBJECTIVEThis article aimed to review the incidence of Helicobacter pylori (H. pylori) infection and its therapy.
DATA SOURCESRelevant articles published in English were identified by searching in PubMed from 2000 to 2013, with keywords "H. pylori". Important references from selected articles were also retrieved from Elsevier, Wiley, EBSCO, and SPRINGER. The Chinese articles published were searched from China National Knowledge Infrastructure (CNKI).
STUDY SELECTIONArticles about "prevalence", "gastric carcinoma", "peptic ulcer", "gastroesophageal reflux disease", "functional dyspepsia", "pathogenic mechanism", "therapy", "eradication rate", "antibiotic resistance", and "gene polymorphisms" were selected.
RESULTSThe decreased infection rates of H. pylori could also be linked to the changed disease spectrum, such as the decreased morbidity and recurrence rate of H. pylori-related peptic ulcer, and the increased morbidity of gastroesophageal reflux. Although different treatment regimens have been used for H. pylori infection, the H. pylori eradication rate declined gradually. Due to primary resistance to antibiotics, the gene polymorphism of host and infected strain, and the therapy regimes, H. pylori eradication became even more difficult.
CONCLUSIONSThe prevalence of H. pylori infection had been decreasing, but the rate of eradication failure has dramatically risen in many countries due to resistance to antibiotic. H. pylori therapy in clinical practice is becoming progressively more difficult.
Drug Resistance, Bacterial ; genetics ; Helicobacter Infections ; drug therapy ; epidemiology ; Helicobacter pylori ; drug effects ; genetics ; pathogenicity ; Humans
3.Plasmid-mediated quinolone resistance in bacteria.
Chinese Journal of Epidemiology 2009;30(5):518-521
5.Characterization of pncA Mutations of Pyrazinamide-Resistant Mycobacterium tuberculosis in Korea.
Kyung Wha LEE ; Jae Myung LEE ; Ki Suck JUNG
Journal of Korean Medical Science 2001;16(5):537-543
Pyrazinamide (PZA) is one of the most important drugs for the treatment of Mycobacterium tuberculosis infection. However, the increasing frequency of PZA-resistant strains limits its effectiveness. In Korea, most PZA-resistant strains also exhibit both isoniazid and rifampin resistance making it essential to identify these resistant strains accurately and rapidly for effective treatment of mycobacterial infection. In this study, the characteristics and frequency of mutations of the pncA gene encoding pyrazinamidase were investigated in PZA-resistant clinical isolates from Korea. Automated DNA sequencing was used to evaluate the usefulness of DNA-based detection of PZA resistance. Among 95 PZA-resistant clinical isolates, 92 (97%) exhibited mutations potentially affecting either the production or the activity of the enzyme. Mutations were found throughout the pncA gene including the upstream region. Single nucleotide replacement appeared to be the major mutational event (69/92), although multiple substitutions as well as insertion and deletion of nucleotides were also identified. The high frequency of pncA mutations observed in this study supports the usefulness of DNA-based detection of PZA-resistant M. tuberculosis. Having verified the scattered and diverse mutational characteristics of the pncA gene, automated DNA sequencing seems to be the best strategy for rapid detection of PZA-resistant M. tuberculosis.
Amidohydrolases/*genetics
;
Antitubercular Agents/*pharmacology
;
Drug Resistance, Bacterial
;
*Mutation
;
Mycobacterium tuberculosis/*drug effects/genetics
;
Pyrazinamide/*pharmacology
6.Multidrug resistance of enteric bacilli and its relation to structure and molecular evolution of variable region in resistance-related class-I integron.
Huan WANG ; Qiyu BAO ; Aihua SUN ; Jinfang ZHAO ; Yumei GE ; Jie YAN
Journal of Zhejiang University. Medical sciences 2013;42(2):149-155
OBJECTIVETo investigate the drug resistance of enteric bacilli and its relation to the drug resistance gene cassette in the variable region and molecular evolution of class-I integron.
METHODSK-B assay was applied to measure the drug resistance of E.coli, E.cloacae and A.baumannii isolated against twelve antibiotics. The class-I integron and drug resistance gene cassettes in the variable region of the integron were detected by PCR and sequencing of amplification products. The molecular evolution of drug resistance genes in the class-I integrons was analyzed using Clustal X and MEGA software.
RESULTS54.2%-100% of A.baumannii isolates were resistant to the penicillin and cephem antibiotics, while E.coli and E.cloacae isolates had resistance rates of 41.6%-62.5% to cephem antibiotics. 62.5%(15/24) of E.coli, 67.9%(19/28) of E.cloacae and 83.3%(20/24) of A.baumannii isolates were positive for class-I integrons. 81.5% (44/54) of class-I integrons showed 4 different single band spectrums and the other class-I integrons displayed 3 different double band spectrums. In the drug resistance gene cassettes in variable regions of class-I integrons there were 7 types in 4 groups of drug resistance genes, including aac(6'), sad(3"), aad(2"), cat(4') and dfr (types 7, A13 and 15), which induced the resistance to aminoglycosides and sulfamido antibiotics and chloromycin. The class-I integrons in the isolates might be divided into 4 molecular evolution groups according to the diversity of dihydrofolate reductase encoding gene sequences.
CONCLUSIONThe enteric bacilli have a high drug resistance and frequently carry class-I integrons with 7 drug resistance gene cassettes which present 4 different evolutionary pathways.
Anti-Bacterial Agents ; pharmacology ; Drug Resistance, Multiple, Bacterial ; genetics ; Enterobacteriaceae ; drug effects ; genetics ; Evolution, Molecular ; Integrons ; genetics
7.Antibiotic resistance and carriage class 1 and 2 integrons in clinical isolates of Acinetobacter baumannii from Tehran, Iran.
Reza MIRNEJAD ; Sepideh MOSTOFI ; Faramaz MASJEDIAN
Asian Pacific Journal of Tropical Biomedicine 2013;3(2):140-145
OBJECTIVETo investigate antibiotic resistance and carriage class 1 and 2 integrons in clinical isolates of Acinetobacter baumannii (A. baumannii) from Tehran, Iran.
METHODSAntimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute. The presence of integrons was investigated by PCR using specific primers.
RESULTSAmong isolated A. baumannii strains, 82% were multidrug resistant, 27 samples (54%) were resistant to three or more than three antibiotics and 16 samples (32%) showed resistance to two antibiotics. Integrons were detected from 44 of 50 isolates (88%), with classes 1 and 2 being observed in 42% (21/50) and 82% (41/50) of isolates, respectively. Integron-positive A. baumannii isolates showed higher antibiotic resistance than integron-negative isolates and all showed a multidrug-resistant phenotype.
CONCLUSIONSOur findings show that classes 1 and 2 integrons, and especially classes 2 integrons are widely disseminated among A. baumannii strains isolated from Tehran and these structures are playing a major role in the acquisition of multidrug resistance in these strains. So monitoring of drug resistance with investigating carriage class 1 and 2 integrons is very important to plan specific infection control measures due to multidrug resistance A. baumannii in Iran hospitals.
Acinetobacter baumannii ; drug effects ; genetics ; Anti-Bacterial Agents ; pharmacology ; Drug Resistance, Multiple, Bacterial ; genetics ; Integrons ; genetics ; Iran ; Microbial Sensitivity Tests
8.Molecular characterization of vancomycin-resistant Enterococci.
He WANG ; Ying-Chun XU ; Xiu-Li XIE ; Peng WANG ; Ren-Yuan ZHU ; Xiao-Jiang ZHANG ; Hui WANG ; Min-Jun CHEN
Acta Academiae Medicinae Sinicae 2008;30(5):521-524
OBJECTIVETo investigate the homology and resistant mechanism of vancomycin-resistant Enterococci (VRE) isolates.
METHODSA total of 9 VRE isolates were collected from 2006 to 2007 at PUMC hospital. The susceptibility of these isolates to 10 different antibiotics including vancomycin was tested by E-test. These strains were processed by brain heart infusion agar screening in the presence of vancomycin (6 microg/ml), and were analyzed for genotypic characteristics using the multiplex PCR. The homology of the isolates was determined by pulsed-field gel electrophoresis (PFGE).
RESULTSAll the 9 VRE isolates were identified as Enterococci faecium. The visual analysis of PFGE patterns revealed 6 different PFGE types. The vanA gene was confirmed by PCR and sequencing in 9 VRE isolates, which were consistent between phenotype and genotype for glycopeptides resistance.
CONCLUSIONSOnly vanA genotype was detected in PUMC hospital. Clonal dissemination, horizontal gene transfer, and the selective pressure of antimicrobial agents may contribute to the increase of VRE.
Bacterial Proteins ; genetics ; Bacterial Typing Techniques ; Drug Resistance, Multiple, Bacterial ; Enterococcus faecium ; classification ; drug effects ; genetics ; isolation & purification ; Gram-Positive Bacterial Infections ; microbiology ; Humans ; Vancomycin Resistance
9.Antimicrobial effects of qingkailing injection extract and combination therapy of qingkailing injection and antibiotics on bacteria carrying blaNDM-1 resistance gene.
Wei SHANG ; Xue-Song WANG ; Da-Yang ZOU ; Zhuang-Nian ZHANG ; Xiang-Ru LIAO ; Jing YUAN
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(4):506-509
OBJECTIVETo research the bacteriostatic effects of Qingkailing Injection Extract (QKLIE) and combination therapy of Qingkailing Injection (QKLI) and antibiotics on bacteria carrying New Delhi metallo-3-lactamase 1 (NDM-1) blaNDM-1 resistance gene, and to determine their minimal inhibitory concentrations (MIC).
METHODSThe antimicrobial experiments of QKLIE (Radix Isatidis, baicalin, gardenia, honeysuckle) and combination therapy of QKLI and antibiotics were performed by using the agar dilution method and K-B method. The MIC was determined from each extract.
RESULTSThere were different degrees of inhibitory effects on resistant bacteria carrying blaNDM-1 by extracts from main components of QKLI. Of them, the inhibitory effect of baicalin was the best and the MIC of the resistant bacteria was 0.015 g/mL to WD, 0.020 g/mL to WX, 0. 005 g/mL to WJ, and more than 0.020 g/mL to pGEX-4T-NDM-1/DH5alpha (GST-NDM-1), respectively. The MIC value of each extract was sequenced from high to low as baicalin, honeysuckle, gardenia, and Radix Isatidis. Furthermore, combination therapy of QKLI and antibiotics greatly enhanced the antimicrobial activity of each antibiotics when used alone, showing very obvious antibacterial effects on multidrug resistant bacteria carrying blaNDM-1 gene. Of them, the optimal effects were obtained when combined with penicillins (penicillin G, mezlocillin, piperacillin/ tazobactam, ampicillin/sulbactam), with the antibacterial effects improved by 10 folds. The antibacterial effects of other kinds of antibiotics were improved to some extent. Conclusions QKLIE and combination therapy of QKLI and antibiotics showed better bacteriostatic effects on resistant bacteria carrying blaNDM-1 gene. This study provided theoretical bases for drug development, medication and treatment for super-resistant bacteria carrying blaNDM-1.
Anti-Bacterial Agents ; pharmacology ; Bacteria ; drug effects ; genetics ; Drug Resistance, Multiple, Bacterial ; drug effects ; genetics ; Drug Therapy, Combination ; Drugs, Chinese Herbal ; pharmacology ; beta-Lactamases ; genetics
10.Analysis of the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa.
Yang LIU ; Qiong DENG ; Yang YU ; Xianwei CAO ; Qunfei XU ; Lagen WAN
Chinese Journal of Burns 2014;30(1):15-20
OBJECTIVETo study the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa (PA).
METHODSA total of 812 strains of PA (identified) were isolated from sputum, urine, blood, pus, and drainage of patients with burn, severe pneumonia, diabetes, chronic obstructive pneumonia, myocarditis, liver transplantation, or brainstem hemorrhage hospitalized from January to September 2012. Drug resistance of the 812 strains of PA to 15 antibiotics commonly used in clinic, including piperacillin, imipenem, etc., was tested using the automatic microorganism identifying and drug sensitivity analyzer. Among the carbapenems-resistant PA isolates, synergism test with imipenem-ethylene diamine tetraacetic acid (EDTA) and enhancement test with imipenem-EDTA and ceftazidime-EDTA were used to screen metallo-β-lactamase (MBL)-producing strains; modified Hodge test was used to screen strains producing Klebsiella pneumoniae carbapenemases (KPC); the carbapenemase gene, plasmid mediated quinolone resistant (PMQR) gene, and mobile genetic elements (MGE) were detected by polymerase chain reaction (PCR). In addition, a comparative analysis of the PMQR gene carrying level between the carbapenemase gene positive strains and carbapenemase gene negative strains was carried out. The repetitive consensus sequence of Enterobacteriaceae genome PCR (ERIC-PCR) was carried out for gene typing. Moreover, the source and resistance genes of strains with the same genotype were analyzed. Data were processed with Fisher's exact probability test.
RESULTSThe sensitive rates of the 812 strains of PA to ceftriaxone and trimethoprim-sulfamethoxazole were high, respectively 83.07% and 88.19%, and those of the other antibiotics ranged from 17.30% to 55.18%. Twenty-four carbapenems-resistant PA strains were screened, including 11 MBL-producing strains and 2 KPC-producing strains. Eleven carbapenems-resistant PA strains were found to harbor the blaVIM-2 gene, accounting for 45.83%; 2 carbapenems-resistant PA strains carried the blaKPC-2 gene, accounting for 8.33%. Fourteen carbapenems-resistant PA strains only harbored the PMQR gene acc (6')-Ib-cr, accounting for 58.33%; 3 carbapenems-resistant PA strains (12.50%) harbored the PMQR genes acc (6')-Ib-cr and qnr, including 1 strain with qnr A1 and 2 strains with qnr B4. Ten carbapenems-resistant PA strains carried the MGE gene ISCR1, accounting for 41.67%; 6 carbapenems-resistant PA strains carried the MGE gene ISEcp1, accounting for 25.00%. In addition, 3 carbapenems-resistant PA strains co-harbored the MGE genes ISCR1 and ISEcp1 (accounting for 12.50%), while only 1 carbapenems-resistant PA strain co-harbored the MGE genes class 1 integron and ISEcp1, accounting for 4.17%. Twelve out of the 13 carbapenemase gene positive strains carried one or two PMQR gene (s), which was significantly higher than that of the carbapenemase gene negative strains (with only five strains harboring one PMQR gene, P = 0.023). The 24 carbapenems-resistant PA strains were classified into 6 genotypes by the ERIC-PCR. Thirteen strains (accounting for 54.17%), mainly isolated from pus and blood samples, which were collected from burn department, were in genotype A. Eight out of the 13 strains harbored genes blaVIM-2, acc (6')-Ib-cr, and ISCR1. Five strains (accounting for 20.83%), mainly isolated from sputum samples which were collected from ICU, were in genotype B. Only 2 out of the 5 strains co-harbored the carbapenemase gene, PMQR gene, and MGE gene. There were respectively 2 strains in genotypes C and D, both accounting for 8.33%; the strains in different pattern were isolated from different wards, and they harbored diverse resistance genes. There were respectively 1 strain in genotypes E and F, both accounting for 4.17%.
CONCLUSIONSThe resistance mechanism of PA to carbapenems is mainly mediated by the VIM-2 type MBL in our hospital during 2012, followed by KPC-2 type carbapenemase, and the prevalent genotype is type A. The carbapenemase genes and PMQR genes co-carrying phenomenon exists among these strains of PA, which disseminated by clones.
Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; genetics ; Carbapenems ; pharmacology ; DNA, Bacterial ; Drug Resistance, Bacterial ; Humans ; Microbial Sensitivity Tests ; Pseudomonas aeruginosa ; drug effects ; genetics ; isolation & purification ; beta-Lactamases ; genetics