7.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
8.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
9.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
10.Associations between Education Years and Resting-state Functional Connectivity Modulated by APOE ε4 Carrier Status in Cognitively Normal Older Adults
Jiwon KIM ; Sunghwan KIM ; Yoo Hyun UM ; Sheng-Min WANG ; Regina EY KIM ; Yeong Sim CHOE ; Jiyeon LEE ; Donghyeon KIM ; Hyun Kook LIM ; Chang Uk LEE ; Dong Woo KANG
Clinical Psychopharmacology and Neuroscience 2024;22(1):169-181
Objective:
Cognitive reserve has emerged as a concept to explain the variable expression of clinical symptoms in the pathology of Alzheimer’s disease (AD). The association between years of education, a proxy of cognitive reserve, and resting-state functional connectivity (rFC), a representative intermediate phenotype, has not been explored in the preclinical phase, considering risk factors for AD. We aimed to evaluate whether the relationship between years of education and rFC in cognitively preserved older adults differs depending on amyloid-beta deposition and APOE ε4 carrier status as effect modifiers.
Methods:
A total of 121 participants underwent functional magnetic resonance imaging, [ 18F] flutemetamol positron emission tomography-computed tomography, APOE genotyping, and a neuropsychological battery. Potential interactions between years of education and AD risk factors for rFC of AD-vulnerable neural networks were assessed with wholebrain voxel-wise analysis.
Results:
We found a significant education years-by-APOE ε4 carrier status interaction for the rFC from the seed region of the central executive (CEN) and dorsal attention networks. Moreover, there was a significant interaction of rFC between right superior occipital gyrus and the CEN seed region by APOE ε4 carrier status for memory performances and overall cognitive function.
Conclusion
In preclinical APOE ε4 carriers, higher years of education were associated with higher rFC of the AD vulnerable network, but this contributed to lower cognitive function. These results contribute to a deeper understanding of the impact of cognitive reserve on sensitive functional intermediate phenotypic markers in the preclinical phase of AD.

Result Analysis
Print
Save
E-mail