1.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
2.Supramolecular prodrug inspiried by the Rhizoma Coptidis - Fructus Mume herbal pair alleviated inflammatory diseases by inhibiting pyroptosis.
Wenhui QIAN ; Bei ZHANG ; Ming GAO ; Yuting WANG ; Jiachen SHEN ; Dongbing LIANG ; Chao WANG ; Wei WEI ; Xing PAN ; Qiuying YAN ; Dongdong SUN ; Dong ZHU ; Haibo CHENG
Journal of Pharmaceutical Analysis 2025;15(2):101056-101056
Sustained inflammatory responses are closely related to various severe diseases, and inhibiting the excessive activation of inflammasomes and pyroptosis has significant implications for clinical treatment. Natural products have garnered considerable concern for the treatment of inflammation. Huanglian-Wumei decoction (HLWMD) is a classic prescription used for treating inflammatory diseases, but the necessity of their combination and the exact underlying anti-inflammatory mechanism have not yet been elucidated. Inspired by the supramolecular self-assembly strategy and natural drug compatibility theory, we successfully obtained berberine (BBR)-chlorogenic acid (CGA) supramolecular (BCS), which is an herbal pair from HLWMD. Using a series of characterization methods, we confirmed the self-assembly mechanism of BCS. BBR and CGA were self-assembled and stacked into amphiphilic spherical supramolecules in a 2:1 molar ratio, driven by electrostatic interactions, hydrophobic interactions, and π-π stacking; the hydrophilic fragments of CGA were outside, and the hydrophobic fragments of BBR were inside. This stacking pattern significantly improved the anti-inflammatory performance of BCS compared with that of single free molecules. Compared with free molecules, BCS significantly attenuated the release of multiple inflammatory mediators and lipopolysaccharide (LPS)-induced pyroptosis. Its anti-inflammatory mechanism is closely related to the inhibition of intracellular nuclear factor-kappaB (NF-κB) p65 phosphorylation and the noncanonical pyroptosis signalling pathway mediated by caspase-11.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Outcome of bariatric surgery in patients with unexpected liver cirrhosis:A multicenter study from China
Sun XIA ; Yao LIBIN ; Kang XING ; Yu WEIHUA ; Kitaghenda Kakule FIDELE ; Mohammad Sajjad Ibn Rashid ; Taguemkam Nogue ANGELINE ; Hong JIAN ; Dong ZHIYONG ; Sun XITAI ; Zhu XIAOCHENG
Liver Research 2024;8(3):172-178
Background and aims:Liver cirrhosis is a complex disease that may result in increased morbidity and mortality following bariatric surgery(BS).This study aimed to explore the outcome of BS in patients with unexpected cirrhosis,focusing on postoperative complications and the progression of liver disease. Methods:A retrospective study of bariatric patients with cirrhosis from four centers in China between 2016 and 2023 was conducted,with follow-up for one year after BS.The primary outcome was the safety of BS in patients with unexpected cirrhosis,while the secondary outcome was the metabolic efficacy of BS in this group postoperatively. Results:A total of 47 patients met the study criteria,including 46 cases of Child-Pugh class A cirrhosis and 1 case of Child-Pugh B.Pathological examination confirmed nodular cirrhosis in 21 patients(44.68%),pseudolobule formation in 1 patient(2.13%),lipedema degeneration with inflammatory cell infiltration in 3 patients(6.38%),and chronic hepatitis in 1 patient(2.13%).The average percentage of total weight loss was 29.73±6.53%at one year postoperatively.During the 30-day postoperative period,the complication rate was 6.38%,which included portal vein thrombosis,gastrointestinal bleeding,and intra-abdominal infection.Moreover,no cases of liver decompensation or mortality were reported during the follow-up period.The remission rates of comorbidities among 41 patients one year after surgery were as fol-lows:dyslipidemia 100%,type 2 diabetes 82.61%,hypertension 84.62%,and obstructive sleep apnea syndrome 85.71%. Conclusions:BS can be safely performed in patients with unexpected cirrhosis in the compensated stage of liver disease,with low postoperative morbidity and no mortality observed during one-year follow-up.
5.Development of Multiple Collector Inductively Coupled Plasma Mass Spectrometry Single Particle Analysis System Based on High-Speed Oscilloscope and Its Application to Isotopic Analysis of Individual Simulated Nuclear Particles
Peng-Ju XING ; Yuan FU ; Stanley Nicholas BELSHAW ; Jun-Hang DONG ; Xing LIU ; Hong-Tao ZHENG ; Zhen-Li ZHU
Chinese Journal of Analytical Chemistry 2024;52(10):1591-1601
The analysis of nano-micro nuclear particles has attracted significant attention due to the crucial role of their elemental and isotopic characteristics in tracing the origins of particulate matter and assessing its potential risks to human health and the environment.However,challenges persist in obtaining accurate and consistent element profiles and ratios for small-sized nanoparticles due to their low level and the transient nature.In this study,a high-speed digital oscilloscope was integrated with multiple collector inductively coupled plasma mass spectrometry(MC-ICP-MS)to develop a high time-resolution"Event-triggered signal capture"(ETSC)system for single particle analysis.This innovative approach enabled the analysis of element/isotope within rare earth nanoparticles at ag-fg level.The ETSC accurately recorded the complete profile of single particle,event captured by the electron multiplier with nanosecond time resolution,allowing for high-sensitivity element analysis and high-precision isotope analysis of single particles.The results demonstrated that the ETSC system could achieve quantitative analysis of ag levels of ytterbium(Yb)in 50-nm rare earth-doped particles,with a detection limit as low as 38 ag for Yb.Moreover,the isotopic precision of single particle analysis for 173/171Yb could reach 0.047(standard deviation),and the standard error for isotopic analysis of multiple particles could achieve a level of 2‰-3‰(permil)for 173/171Yb.Finally,the capability of ETSC system to analyze environmental samples was demonstrated through the analysis of doped ytterbium oxide nanoparticles.All these findings demonstrated that the ETSC provided a unique method for elemental and isotopic analysis of single nuclear particles.
6.Exploring the Core Medication and Efficacy Evaluation of Hypoxic Pulmonary Hypertension Based on the Traditional Chinese Medicine Inheritance Assistance Platform
Zhengwei DONG ; Min ZHANG ; Yun DING ; Zuoying XING ; Rui YU ; Mengyi ZHAO ; Guanwei FAN ; Yongxia WANG ; Mingjun ZHU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(8):2016-2022
Objective To investigate the core drugs of traditional Chinese medicine(TCM)for the treatment of hypoxic pulmonary hypertension(HPH),and to verify the drug efficacy by hypoxia combined with Su5416(Hypoxia+Su5416,HySu)-induced PH mouse model.Methods Relevant literatures on TCM treatment of HPH in China Knowledge Network,Wanfang,Weipu were collected,screened and set up a database through the nerf criteria,and inputted into the software of traditional Chinese medicine inheritance assistance platform(V2.5)for the excavation of medication law.The HySu-PH mouse model was established,and the core drugs were evaluated for drug efficacy through force exhaustion exercise running table,blood oxygen saturation,right ventricular pressure,and right heart hypertrophy index test.Results The 102 relevant formulas for the treatment of HPH were screened,involving a total of 158 traditional Chinese medicines,and the top 5 drug frequencies were Salvia miltiorrhiza,Rhizoma Chuanxiong,Astragalus membranaceus,Draba hebecarpa,and Angelica sinensis,with the highest use of blood-activating and blood-stasis removing drugs,and deficiency-tonifying drugs in the categories of drugs used,and Salvia miltiorrhiza was the core drug used.HySu-PH mouse models were constructed and given 2 weeks of treatment with the danshen preparation Danshen injection.Danshen injection significantly elevated body weight(P<0.01),oxygen saturation(P<0.05),displacement of exhaustion(P<0.01),and duration of exhaustion(P<0.05),and lowered the right ventricular systolic blood pressure(P<0.01)and the right cardiac hypertrophy index(P<0.01).Conclusion Salvia miltiorrhiza is a core drug for the treatment of HPH,and the danshen preparation Danshen injection can effectively treat HySu-PH.
7.Exploring the Mechanism of Salvia Miltiorrhiza in the Treatment of Hypoxic Pulmonary Hypertension Based on Network Pharmacology and Experimental Validation
Zhengwei DONG ; Min ZHANG ; Huan ZHAO ; Zuoying XING ; Rui YU ; Guanwei FAN ; Yongxia WANG ; Mingjun ZHU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(8):2023-2029
Objective Based on the pre-existing basis of effective treatment of hypoxia combined with Su5416-induced hypoxic pulmonary hypertension(HPH)by Salvia miltiorrhiza,to investigate the mechanism of Salvia miltiorrhiza in the treatment of HPH.Methods Using a network pharmacology approach to obtain the key pathways of Salvia miltiorrhiza for the treatment of HPH.The active ingredients of Salvia miltiorrhiza were collected to obtain the targets of the active ingredients.HPH disease targets were collected to obtain the intersection of Salvia miltiorrhiza component targets and HPH disease targets.Protein-Protein Interaction Networks(PPIs)were constructed and KEGG analysis was performed to obtain the key pathways of Salvia miltiorrhiza for HPH.Then used molecular biology to validate the key pathways.Results The 81 targets of Salvia miltiorrhiza for the treatment of HPH were obtained by network pharmacology,and PPI showed that drug component-disease common core targets included ATK1,TNF,EGFR,IL6,ESR1,and KEGG-enriched Pathway mainly included PI3K-AKT signaling pathway,HIF-1 signaling pathway,MAKP signaling pathway,TNF signaling pathway,JAK-STAT signaling pathway and so on.Molecular biological assays showed that Salvia miltiorrhiza had the effect of reducing lung tissue fibrosis and inhibiting the PI3K/AKT signalling pathway in HySu-PH mice.Conclusion Salvia miltiorrhiza has the effect of attenuating pulmonary fibrosis,and its mechanism of action is related to the inhibition of the PI3K/Akt signalling pathway.
8.Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration.
Zekai WU ; Yuan SHI ; Yueli CUI ; Xin XING ; Liya ZHANG ; Da LIU ; Yutian ZHANG ; Ji DONG ; Li JIN ; Meijun PANG ; Rui-Ping XIAO ; Zuoyan ZHU ; Jing-Wei XIONG ; Xiangjun TONG ; Yan ZHANG ; Shiqiang WANG ; Fuchou TANG ; Bo ZHANG
Protein & Cell 2023;14(5):350-368
Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.
Humans
;
Mice
;
Rats
;
Cell Proliferation
;
Heart/physiology*
;
Mammals
;
Myocardial Infarction/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Pericardium/metabolism*
;
Single-Cell Analysis
;
Zebrafish/metabolism*
9.Exploring the common mechanism of Yindan Xinnaotong soft capsule in the treatment of stroke and coronary heart disease through HIF1α -MMP9-mediated HIF1α signaling pathway
Jie GAO ; Yi-feng DONG ; Si-meng WANG ; Ru-shang HE ; Ting-can JIANG ; Ming-jiang WU ; Hong-hua WU ; Xing LI ; Guan-wei FAN ; Yan ZHU ; Ming LV
Acta Pharmaceutica Sinica 2023;58(6):1401-1411
Coronary heart disease (CHD) and stroke are the most well-known cardiovascular diseases, which share many common pathological basis. Yindan Xinnaotong soft capsule (YDXNT) is a commonly used Chinese patent medicine in the treatment of stroke and CHD. However, its action of mechanism of co-treatment for stroke and CHD is still unclear. The aim of this study was to explore the common mechanism of YDXNT in co-treatment of CHD and stroke using network pharmacology, experimental verification and molecular docking. An integrated literature mining and databases of IPA, ETCM, HERB, Swiss Target Prediction, OMIM and GeneCards were used to screen and predict active ingredients and potential targets of YDXNT in co-treatment of CHD and stroke. The protein-protein interaction network, GO analysis and pathway analysis were analyzed by IPA software. The effect of YDXNT on core targets was verified by immunofluorescence. UPLC-QTOF/MS and molecular docking were used to screen and predict the main active constituents of YDXNT and their interactions with core targets. A total of 151 potential targets are predicted for YDXNT in co-treatment of CHD and stroke. Hypoxia-inducible factor-1
10.Neutralizing Antibody Responses against Five SARS-CoV-2 Variants and T Lymphocyte Change after Vaccine Breakthrough Infections from the SARS-CoV-2 Omicron BA.1 Variant in Tianjin, China: A Prospective Study.
Ying ZHANG ; Jiang Wen QU ; Min Na ZHENG ; Ya Xing DING ; Wei CHEN ; Shao Dong YE ; Xiao Yan LI ; Yan Kun LI ; Ying LIU ; Di ZHU ; Can Rui JIN ; Lin WANG ; Jin Ye YANG ; Yu ZHAI ; Er Qiang WANG ; Xing MENG
Biomedical and Environmental Sciences 2023;36(7):614-624
OBJECTIVE:
To investigate whether Omicron BA.1 breakthrough infection after receiving the SARS-CoV-2 vaccine could create a strong immunity barrier.
METHODS:
Blood samples were collected at two different time points from 124 Omicron BA.1 breakthrough infected patients and 124 controls matched for age, gender, and vaccination profile. Live virus-neutralizing antibodies against five SARS-CoV-2 variants, including WT, Gamma, Beta, Delta, and Omicron BA.1, and T-lymphocyte lymphocyte counts in both groups were measured and statistically analyzed.
RESULTS:
The neutralizing antibody titers against five different variants of SARS-CoV-2 were significantly increased in the vaccinated population infected with the Omicron BA.1 variant at 3 months after infection, but mainly increased the antibody level against the WT strain, and the antibody against the Omicron strain was the lowest. The neutralizing antibody level decreased rapidly 6 months after infection. The T-lymphocyte cell counts of patients with mild and moderate disease recovered at 3 months and completely returned to the normal state at 6 months.
CONCLUSION
Omicron BA.1 breakthrough infection mainly evoked humoral immune memory in the original strain after vaccination and hardly produced neutralizing antibodies specific to Omicron BA.1. Neutralizing antibodies against the different strains declined rapidly and showed features similar to those of influenza. Thus, T-lymphocytes may play an important role in recovery.
Humans
;
Antibodies, Neutralizing
;
Prospective Studies
;
SARS-CoV-2
;
Breakthrough Infections
;
COVID-19 Vaccines
;
COVID-19
;
T-Lymphocytes
;
China/epidemiology*
;
Antibodies, Viral

Result Analysis
Print
Save
E-mail