1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
3.Erratum to "Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress" Biomol Ther 32(3), 349-360 (2024)
Hyun HWANGBO ; Cheol PARK ; EunJin BANG ; Hyuk Soon KIM ; Sung-Jin BAE ; Eunjeong KIM ; Youngmi JUNG ; Sun-Hee LEEM ; Young Rok SEO ; Su Hyun HONG ; Gi-Young KIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):555-555
4.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
5.Erratum to "Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress" Biomol Ther 32(3), 349-360 (2024)
Hyun HWANGBO ; Cheol PARK ; EunJin BANG ; Hyuk Soon KIM ; Sung-Jin BAE ; Eunjeong KIM ; Youngmi JUNG ; Sun-Hee LEEM ; Young Rok SEO ; Su Hyun HONG ; Gi-Young KIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):555-555
6.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
7.Quercetin-3-Methyl Ether Induces Early Apoptosis to Overcome HRV1B Immune Evasion, Suppress Viral Replication, and Mitigate Inflammatory Pathogenesis
Jae-Hyoung SONG ; Seo-Hyeon MUN ; Sunil MISHRA ; Seong-Ryeol KIM ; Heejung YANG ; Sun Shim CHOI ; Min-Jung KIM ; Dong-Yeop KIM ; Sungchan CHO ; Youngwook HAM ; Hwa-Jung CHOI ; Won-Jin BAEK ; Yong Soo KWON ; Jae-Hoon CHANG ; Hyun-Jeong KO
Biomolecules & Therapeutics 2025;33(2):388-398
Human rhinovirus (HRV) causes the common cold and exacerbates chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Despite its significant impact on public health, there are currently no approved vaccines or antiviral treatments for HRV infection. Apoptosis is the process through which cells eliminate themselves through the systematic activation of intrinsic death pathways in response to various stimuli. It plays an important role in viral infections and serves as a key immune defense mechanism in the interactions between viruses and the host. In the present study, we investigated the antiviral effects of quercetin-3-methyl ether, a flavonoid isolated from Serratula coronata, on human rhinovirus 1B (HRV1B). Quercetin-3-methyl ether significantly inhibited HRV1B replication in HeLa cells in a concentration-dependent manner, thereby reducing cytopathic effects and viral RNA levels. Time-course and time-of-addition analyses confirmed that quercetin-3-methyl ether exhibited antiviral activity during the early stages of viral infection, potentially targeting the replication and translation phases. Gene expression analysis using microarrays revealed that pro-apoptotic genes were upregulated in quercetin-3-methyl ether-treated cells, suggesting that quercetin-3-methyl ether enhances early apoptosis to counteract HRV1B-induced immune evasion. In vivo administration of quercetin-3-methyl ether to HRV1B-infected mice significantly reduced viral RNA levels and inflammatory cytokine production in the lung tissues. Our findings demonstrated the potential of quercetin-3-methyl ether as a novel antiviral agent against HRV1B, thereby providing a promising therapeutic strategy for the management of HRV1B infections and related complications.
8.Erratum to "Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress" Biomol Ther 32(3), 349-360 (2024)
Hyun HWANGBO ; Cheol PARK ; EunJin BANG ; Hyuk Soon KIM ; Sung-Jin BAE ; Eunjeong KIM ; Youngmi JUNG ; Sun-Hee LEEM ; Young Rok SEO ; Su Hyun HONG ; Gi-Young KIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):555-555
9.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
10.Consensus-Based Guidelines for the Treatment of Atopic Dermatitis in Korea (Part II): Biologics and JAK inhibitors
Hyun-Chang KO ; Yu Ri WOO ; Joo Yeon KO ; Hye One KIM ; Chan Ho NA ; Youin BAE ; Young-Joon SEO ; Min Kyung SHIN ; Jiyoung AHN ; Bark-Lynn LEW ; Dong Hun LEE ; Sang Eun LEE ; Sul Hee LEE ; Yang Won LEE ; Ji Hyun LEE ; Yong Hyun JANG ; Jiehyun JEON ; Sun Young CHOI ; Ju Hee HAN ; Tae Young HAN ; Sang Wook SON ; Sang Hyun CHO
Annals of Dermatology 2025;37(4):216-227
Background:
Atopic dermatitis (AD) is a common skin disease with a wide range of symptoms. Due to the rapidly changing treatment landscape, regular updates to clinical guidelines are needed.
Objective:
This study aimed to update the guidelines for the treatment of AD to reflect recent therapeutic advances and evidence-based recommendations.
Methods:
The Patient characteristics, type of Intervention, Control, and Outcome framework was used to determine 48 questions related to AD management. Evidence was graded, recommendations were determined, and, after 2 voting rounds among the Korean Atopic Dermatitis Association (KADA) council members, consensus was achieved.
Results:
This guideline provides treatment guidance on advanced systemic treatment modalities for AD. In particular, the guideline offers up-to-date treatment recommendations for biologics and Janus-kinase inhibitors used in the treatment of patients with moderate to severe AD.It also provides guidance on other therapies for AD, along with tailored recommendations for children, adolescents, the elderly, and pregnant or breastfeeding women.
Conclusion
KADA’s updated AD treatment guidelines incorporate the latest evidence and expert opinion to provide a comprehensive approach to AD treatment. The guidelines will help clinicians optimize patient-specific therapies.

Result Analysis
Print
Save
E-mail