1.Anti-obesity effects of Lysimachia foenum-graecum characterized by decreased adipogenesis and regulated lipid metabolism.
Jong Bae SEO ; Sung Sik CHOE ; Hyun Woo JEONG ; Sang Wook PARK ; Hyun Jung SHIN ; Sun Mi CHOI ; Jae Young PARK ; Eun Wook CHOI ; Jae Bum KIM ; Dong Seung SEEN ; Jae Yeon JEONG ; Tae Gyu LEE
Experimental & Molecular Medicine 2011;43(4):205-215
Lysimachia foenum-graecum has been used as an oriental medicine with anti-inflammatory effect. The anti-obesity effect of L. foenum-graecum extract (LFE) was first discovered in our screening of natural product extract library against adipogenesis. To characterize its anti-obesity effects and to evaluate its potential as an anti-obesity drug, we performed various obesity-related experiments in vitro and in vivo. In adipogenesis assay, LFE blocked the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 2.5 microg/ml. In addition, LFE suppressed the expression of lipogenic genes, while increasing the expression of lipolytic genes in vitro at 10 microg/ml and in vivo at 100 mg/kg/day. The anti-adipogenic and anti-lipogenic effect of LFE seems to be mediated by the inhibition of PPARgamma and C/EBPalpha expression as shown in in vitro and in vivo, and the suppression of PPARgamma activity in vitro. Moreover, LFE stimulated fatty acid oxidation in an AMPK-dependent manner. In high-fat diet (HFD)-induced obese mice (n = 8/group), oral administration of LFE at 30, 100, and 300 mg/kg/day decreased total body weight gain significantly in all doses tested. No difference in food intake was observed between vehicle- and LFE-treated HFD mice. The weight of white adipose tissues including abdominal subcutaneous, epididymal, and perirenal adipose tissue was reduced markedly in LFE-treated HFD mice in a dose-dependent manner. Treatment of LFE also greatly improved serum levels of obesity-related biomarkers such as glucose, triglycerides, and adipocytokines leptin, adiponectin, and resistin. All together, these results showed anti-obesity effects of LFE on adipogenesis and lipid metabolism in vitro and in vivo and raised a possibility of developing LFE as anti-obesity therapeutics.
3T3-L1 Cells
;
Adipogenesis/*drug effects
;
Adipose Tissue/drug effects/metabolism
;
Adipose Tissue, White
;
Animals
;
Anti-Obesity Agents/administration & dosage/pharmacology/*therapeutic use
;
Body Weight/drug effects
;
CCAAT-Enhancer-Binding Protein-alpha/genetics
;
Cell Differentiation/drug effects
;
Eating/drug effects
;
Fatty Acids/metabolism
;
Gene Expression/drug effects
;
Lipid Metabolism/*drug effects
;
Lipids
;
Lipogenesis/drug effects
;
Mice
;
Mice, Inbred C57BL
;
Obesity/prevention & control
;
PPAR gamma/antagonists & inhibitors/genetics
;
Plant Extracts/*pharmacology
;
Plants, Medicinal
;
Primulaceae/*chemistry