1.Evolution of Interferon-Gamma Release Assay Results and Submillisievert Chest CT Findings among Close Contacts of Active Pulmonary Tuberculosis Patients
Soonho YOON ; Do-CiC MIHN ; Jin-Hwa SONG ; Sung A KIM ; Jae-Joon YIM
Tuberculosis and Respiratory Diseases 2020;83(4):283-288
Background:
Latent tuberculosis (TB) infection among TB contacts is diagnosed using plain chest radiography and interferon-gamma release assays (IGRAs). However, plain chest radiographs often miss active TB, and the results of IGRA could fluctuate over time. The purpose of this study was to elucidate changes in the results of the serial IGRAs and in the findings of the serial submillisievert chest computed tomography (CT) scans among the close contacts of active pulmonary TB patients.
Methods:
Patients age 20 or older with active pulmonary TB and their close contacts were invited to participate in this study. Two types of IGRA (QuantiFERON-TB Gold In-Tube assay [QFT-GIT] and the T-SPOT.TB test [T-SPOT]) and submillisievert chest CT scanning were performed at baseline and at 3 and 12 months after enrollment.
Results:
In total, 19 close contacts participated in this study. One was diagnosed with active pulmonary TB and was excluded from further analysis. At baseline, four of 18 contacts (22.2%) showed positive results for QFT-GIT and T-SPOT; there were no discordant results. During the follow-up, transient and permanent positive or negative conversions and discordant results between the two types of IGRAs were observed in some patients. Among the 17 contacts who underwent submillisievert chest CT scanning, calcified nodules were identified in seven (41.2%), noncalcified nodules in 14 (82.4%), and bronchiectasis in four (23.5%). Some nodules disappeared over time.
Conclusion
The results of the QFT-GIT and T-SPOT assays and the CT images may change during 1 year of observation of close contacts of the active TB patients.
2.Clinical Usefulness of LabChip Real-time PCR using Lab-On-a-Chip Technology for Diagnosing Malaria
Jeeyong KIM ; Da Hye LIM ; Do-CiC MIHN ; Jeonghun NAM ; Woong Sik JANG ; Chae Seung LIM
The Korean Journal of Parasitology 2021;59(1):77-82
As malaria remains a major health problem worldwide, various diagnostic tests have been developed, including microscopy-based and rapid diagnostic tests. LabChip real-time PCR (LRP) is a small and portable device used to diagnose malaria using lab-on-a-chip technology. This study aimed to evaluate the diagnostic performance of LRP for detecting malaria parasites. Two hundred thirteen patients and 150 healthy individuals were enrolled from May 2009 to October 2015. A diagnostic detectability of LRP for malaria parasites was compared to that of conventional RT-PCR. Sensitivity of LRP for Plasmodium vivax, P. falciparum, P. malariae, and P. ovale was 95.5%, 96.0%, 100%, and 100%, respectively. Specificity of LRP for P. vivax, P. falciparum, P. malariae, and P. ovale was 100%, 99.3%, 100%, and 100%, respectively. Cohen’s Kappa coefficients between LRP and CFX96 for detecting P. vivax, P. falciparum, P. malariae, and P. ovale were 0.96, 0.98, 1.00, and 1.00, respectively. Significant difference was not observed between the results of LRP and conventional RT-PCR and microscopic examination. A time required to amplify DNAs using LRP and conventional RT-PCR was 27 min and 86 min, respectively. LRP amplified DNAs 2 times more fast than conventional RT-PCR due to the faster heat transfer. Therefore, LRP could be employed as a useful tool for detecting malaria parasites in clinical laboratories.