1.Pharmacotherapy for Alcohol Dependence: Anticraving Medications for Relapse Prevention.
Young Chul JUNG ; Kee NAMKOONG
Yonsei Medical Journal 2006;47(2):167-178
Alcohol dependence is a chronic disorder that results from a variety of genetic, psychosocial, and environmental factors. Relapse prevention for alcohol dependence has traditionally involved psychosocial and psychotherapeutic interventions. Pharmacotherapy, however, in conjunction with behavioral therapy, is generating interest as another modality to prevent relapse and enhance abstinence. Naltrexone and acamprosate are at the forefront of the currently available pharmacological options. Naltrexone is an opioid receptor antagonist and is thought to reduce the rewarding effect of alcohol. Acamprosate normalizes the dysregulation of N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitation that occurs in alcohol withdrawal and early abstinence.These different mechanisms of action and different target neurotransmitter systems may endow the two drugs with efficacy for different aspects of alcohol use behavior. Since not all patients seem to benefit from naltrexone and acamprosate, there are ongoing efforts to improve the treatment outcomes by examining the advantages of combined pharmacotherapy and exploring the variables that might predict the response of the medications. In addition, novel medications are being investigated to assess their efficacy in preventing relapse and increasing abstinence.
gamma-Aminobutyric Acid/metabolism
;
Taurine/analogs & derivatives/therapeutic use
;
Recurrence
;
Receptors, Opioid, mu/genetics/metabolism
;
Receptors, Opioid/antagonists & inhibitors
;
Polymorphism, Genetic
;
Neurons/metabolism
;
Naltrexone/therapeutic use
;
N-Methylaspartate/metabolism
;
Models, Neurological
;
Models, Biological
;
Humans
;
Glutamine/metabolism
;
Disulfiram/therapeutic use
;
Alcoholism/*drug therapy
;
Alcohol Deterrents/*therapeutic use
2.Disulfiram enhances the antitumor activity of cisplatin by inhibiting the Fanconi anemia repair pathway.
Meng YUAN ; Qian WU ; Mingyang ZHANG ; Minshan LAI ; Wenbo CHEN ; Jianfeng YANG ; Li JIANG ; Ji CAO
Journal of Zhejiang University. Science. B 2023;24(3):207-220
A series of chemotherapeutic drugs that induce DNA damage, such as cisplatin (DDP), are standard clinical treatments for ovarian cancer, testicular cancer, and other diseases that lack effective targeted drug therapy. Drug resistance is one of the main factors limiting their application. Sensitizers can overcome the drug resistance of tumor cells, thereby enhancing the antitumor activity of chemotherapeutic drugs. In this study, we aimed to identify marketable drugs that could be potential chemotherapy sensitizers and explore the underlying mechanisms. We found that the alcohol withdrawal drug disulfiram (DSF) could significantly enhance the antitumor activity of DDP. JC-1 staining, propidium iodide (PI) staining, and western blotting confirmed that the combination of DSF and DDP could enhance the apoptosis of tumor cells. Subsequent RNA sequencing combined with Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis and cell biology studies such as immunofluorescence suggested an underlying mechanism: DSF makes cells more vulnerable to DNA damage by inhibiting the Fanconi anemia (FA) repair pathway, exerting a sensitizing effect to DNA damaging agents including platinum chemotherapy drugs. Thus, our study illustrated the potential mechanism of action of DSF in enhancing the antitumor effect of DDP. This might provide an effective and safe solution for combating DDP resistance in clinical treatment.
Female
;
Male
;
Humans
;
Cisplatin/pharmacology*
;
Disulfiram/pharmacology*
;
Testicular Neoplasms/drug therapy*
;
Fanconi Anemia/drug therapy*
;
Alcoholism/drug therapy*
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Substance Withdrawal Syndrome/drug therapy*
;
Apoptosis
;
Antineoplastic Agents/therapeutic use*
;
Cell Proliferation