2.Aquatic Toxicity Assessment of Phosphate Compounds.
Eunju KIM ; Sunkyoung YOO ; Hee Young RO ; Hye Jin HAN ; Yong Wook BAEK ; Ig Chun EOM ; Hyun Mi KIM ; Pilje KIM ; Kyunghee CHOI
Environmental Health and Toxicology 2013;28(1):e2013002-
OBJECTIVES: Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. METHODS: An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. RESULTS: The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC50) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC50) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC50 was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. CONCLUSIONS: Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C50 was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.
Calcium
;
Daphnia
;
Disinfectants
;
Ecosystem
;
Eutrophication
;
Lakes
;
Lubricants
;
Oryzias
;
Phosphorus
;
Resins, Synthetic
;
Risk Assessment
;
Rivers
;
Toxicity Tests
;
Toxicity Tests, Acute
3.Study of the toxicity of 1-Bromo-3-chloro-5,5-dimethylhydantoin to zebrafish.
WanFang LI ; JinFeng WEI ; HongTao JIN ; MingFang HUANG ; JingXuan ZHANG ; ChengHe LI ; ChaoJie CHEN ; Chang LIU ; AiPing WANG
Biomedical and Environmental Sciences 2011;24(4):383-390
OBJECTIVE1-Bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is a solid oxidizing biocide for water disinfection. The objective of this study was to investigate the toxic effect of BCDMH on zebrafish.
METHODSThe developmental toxicity of BCDMH on zebrafish embryos and the dose-effect relationship was determined. The effect of BCDMH exposure on histopathology and tissue antioxidant activity of adult zebrafish were observed over time.
RESULTSExposure to 4 mg/L BCDMH post-fertilization was sufficient to induce a number of developmental malformations, such as edema, axial malformations, and reductions in heart rate and hatching rate. The no observable effects concentration of BCDMH on zebrafish embryo was 0.5 mg/L. After 96 h exposure, the 50% lethal concentration (95% confidence interval (CI)) of BCDMH on zebrafish embryo was 8.10 mg/L (6.15-11.16 mg/L). The 50% inhibitory concentration (95% CI) of BCDMH on hatching rate was 7.37 mg/L (6.33-8.35 mg/L). Histopathology showed two types of responses induced by BCDMH, defensive and compensatory. The extreme responses were marked hyperplasia of the gill epithelium with lamellar fusion and epidermal peeling. The histopathologic changes in the gills after 10 days exposure were accompanied by significantly higher catalase activity and lipid peroxidation.
CONCLUSIONThese results have important implications for studies on the toxicity and use of BCDMH and its analogs.
Animals ; Antioxidants ; metabolism ; Disinfectants ; toxicity ; Dose-Response Relationship, Drug ; Embryo, Nonmammalian ; drug effects ; Hydantoins ; toxicity ; Time Factors ; Water ; chemistry ; Water Pollutants, Chemical ; toxicity ; Zebrafish
4.Effects of Disinfectants on Larval Development of Ascaris suum Eggs.
Ki Seok OH ; Geon Tae KIM ; Kyu Sung AHN ; Sung Shik SHIN
The Korean Journal of Parasitology 2016;54(1):103-107
The objective of this study was to evaluate the effects of several different commercial disinfectants on the embryogenic development of Ascaris suum eggs. A 1-ml aliquot of each disinfectant was mixed with approximately 40,000 decorticated or intact A. suum eggs in sterile tubes. After each treatment time (at 0.5, 1, 5, 10, 30, and 60 min), disinfectants were washed away, and egg suspensions were incubated at 25℃ in distilled water for development of larvae inside. At 3 weeks of incubation after exposure, ethanol, methanol, and chlorohexidin treatments did not affect the larval development of A. suum eggs, regardless of their concentration and treatment time. Among disinfectants tested in this study, 3% cresol, 0.2% sodium hypochlorite and 0.02% sodium hypochlorite delayed but not inactivated the embryonation of decorticated eggs at 3 weeks of incubation, because at 6 weeks of incubation, undeveloped eggs completed embryonation regardless of exposure time, except for 10% povidone iodine. When the albumin layer of A. suum eggs remained intact, however, even the 10% povidone iodine solution took at least 5 min to reasonably inactivate most eggs, but never completely kill them with even 60 min of exposure. This study demonstrated that the treatment of A. suum eggs with many commercially available disinfectants does not affect the embryonation. Although some disinfectants may delay or stop the embryonation of A. suum eggs, they can hardly kill them completely.
Animals
;
Ascaris suum/*drug effects
;
Disinfectants/*toxicity
;
Embryo, Nonmammalian/drug effects
;
Embryonic Development/*drug effects
;
Time Factors
5.The First Successful Heart-Lung Transplant in a Korean Child with Humidifier Disinfectant-Associated Interstitial Lung Disease.
Won Kyoung JHANG ; Seong Jong PARK ; Eun LEE ; Song I YANG ; Soo Jong HONG ; Ju Hee SEO ; Hyung Young KIM ; Jeong Jun PARK ; Tae Jin YUN ; Hyeong Ryul KIM ; Yong Hee KIM ; Dong Kwan KIM ; Seung Il PARK ; Sang Oh LEE ; Sang Bum HONG ; Tae Sun SHIM ; In Cheol CHOI ; Jinho YU
Journal of Korean Medical Science 2016;31(5):817-821
From 2006 to 2011, an outbreak of a particular type of childhood interstitial lung disease occurred in Korea. The condition was intractable and progressed to severe respiratory failure, with a high mortality rate. Moreover, in several familial cases, the disease affected young women and children simultaneously. Epidemiologic, animal, and post-interventional studies identified the cause as inhalation of humidifier disinfectants. Here, we report a 4-year-old girl who suffered from severe progressive respiratory failure. She could survive by 100 days of extracorporeal membrane oxygenation support and finally, underwent heart-lung transplantation. This is the first successful pediatric heart-lung transplantation carried out in Korea.
Child, Preschool
;
Disinfectants/toxicity
;
Extracorporeal Membrane Oxygenation
;
Female
;
Humans
;
*Humidifiers
;
Lung/drug effects/pathology
;
Lung Diseases, Interstitial/*chemically induced/pathology/*therapy
;
*Lung Transplantation
;
Republic of Korea
;
Respiratory Rate
;
Retrospective Studies
;
Thorax/diagnostic imaging
;
Tomography, X-Ray Computed
6.Toxic Inhalational Injury-Associated Interstitial Lung Disease in Children.
Eun LEE ; Ju Hee SEO ; Hyung Young KIM ; Jinho YU ; Won Kyoung JHANG ; Seong Jong PARK ; Ji Won KWON ; Byoung Ju KIM ; Kyung Hyun DO ; Young Ah CHO ; Sun A KIM ; Se Jin JANG ; Soo Jong HONG
Journal of Korean Medical Science 2013;28(6):915-923
Interstitial lung disease in children (chILD) is a group of disorders characterized by lung inflammation and interstitial fibrosis. In the past recent years, we noted an outbreak of child in Korea, which is possibly associated with inhalation toxicity. Here, we report a series of cases involving toxic inhalational injury-associated chILD with bronchiolitis obliterans pattern in Korean children. This study included 16 pediatric patients confirmed by lung biopsy and chest computed tomography, between February 2006 and May 2011 at Asan Medical Center Children's Hospital. The most common presenting symptoms were cough and dyspnea. The median age at presentation was 26 months (range: 12-47 months), with high mortality (44%). Histopathological analysis showed bronchiolar destruction and centrilobular distribution of alveolar destruction by inflammatory and fibroproliferative process with subpleural sparing. Chest computed tomography showed ground-glass opacities and consolidation in the early phase and diffuse centrilobular nodular opacity in the late phase. Air leak with severe respiratory difficulty was associated with poor prognosis. Although respiratory chemicals such as humidifier disinfectants were strongly considered as a cause of this disease, further studies are needed to understand the etiology and pathophysiology of the disease to improve the prognosis and allow early diagnosis and treatment.
APACHE
;
Bronchi/pathology
;
Child, Preschool
;
Cough/etiology
;
Cyclophosphamide/therapeutic use
;
Disinfectants/*toxicity
;
Dyspnea/etiology
;
Enzyme Inhibitors/therapeutic use
;
Humans
;
Hydroxychloroquine/therapeutic use
;
Immunoglobulins/therapeutic use
;
Infant
;
Inhalation
;
Lung Diseases, Interstitial/chemically induced/drug therapy/*pathology
;
Prognosis
;
Retrospective Studies
;
Steroids/therapeutic use
;
Tomography, X-Ray Computed