1.Effect of cadmium on TET enzymes and DNA methylation changes in human embryonic kidney cell.
Jinhui LI ; Wenxue LI ; Hua YIN ; Bo ZHANG ; Wei ZHU
Chinese Journal of Preventive Medicine 2015;49(9):822-827
OBJECTIVETo detect the expression changes of the demethylase TETs (Ten-eleven translocation enzymes) in human embryonic kidney cell (HEK293) exposed to high dose cadmium chloride (CdCl2), and to investigate the regulation effects of TETs on global genomic methylation.
METHODSHEK293 cells were exposed to CdCl2 for 24 h, 48 h and 72 h, the survival rate was tested by CCK-8 (cell counting kit-8) method, and the cell morphology was observed. The levels of TETs mRNA and protein were detected by fluorescence quantitative PCR and Western blot, respectively. The genomic DNA methylation level was detectedby pyro sequencing assay.
RESULTSCdCl2 had toxic effects on HEK293 cells, and the half inhibitory concentration (IC50) was 1.78 µmol/L. After exposure of CdCl2 for 24 h, 48 h and 72 h, the morphology of HEK293 cells was altered, and the high dose group (2.0 µmol/L) showed vacuolar changes and fuzzy appearance. The level of TET1 mRNA in groups of 0.0, 0.5, 1.0, 2.0 µmol/L were 0.23 ± 0.13, 0.48 ± 0.12, 0.59 ± 0.16 and 0.95 ± 0.39, respectively (F = 182.89, P = 0.002); The level of TET2 mRNA in groups of 0.0, 0.5, 1.0, 2.0 µmol/L were 0.23 ± 0.12, 0.32 ± 0.02,0.31 ± 0.10 and 0.34 ± 0.07, respectively (F = 27.94, P < 0.001); The level of TET3 mRNA in groups of 0.0, 0.5, 1.0, 2.0 µmol/L were 0.26 ± 0.10, 0.27 ± 0.11, 0.25 ± 0.11 and 0.28 ± 0.09, respectively (F = 1.76, P = 0.036). The interaction effect existed between exposure time and doses of TET1 mRNA, TET2 mRNA and TET3 mRNA (F values were 32.94, 23.04 and 13.78, respectively; P values were < 0.001, 0.041 and < 0.001, respectively). Western blot showed that in different exposure time and dose, the protein expression levels of TETs had the similar trend as mRNA levels. In 24 h (55.01 ± 3.62)%, 48 h (48.31 ± 8.99)%, 72 h (48.76 ± 6.60)%, the DNA methylation had significant differences (F = 18.50, P < 0.001); In groups of 0.0 µmol/L (55.29 ± 2.83)%, 0.5 µmol/L (55.35 ± 3.11)%, 1.0 µmol/L (48.58 ± 6.40)% and 2.0 µmol/L (43.56 ± 7.89)%, the differences of DNA methylation had significant differences (F = 7.03, P = 0.048); the effect of interaction was also existed (F = 2.73, P = 0.043).
CONCLUSIONIn the short term exposure to CdCl2, the levels of TETs mRNA and protein showed a trend of increase according to the exposure time and dose, and the methylation level of whole genomic DNA was also altered. The demethylase TETs may play a role in regulating the genomic methylation level of HEK293 exposed to cadmium.
Cadmium Chloride ; toxicity ; DNA Methylation ; Dioxygenases ; genetics ; Epithelial Cells ; drug effects ; HEK293 Cells ; Humans ; RNA, Messenger
2.Advances in bacterial Rieske non-heme iron ring-hydroxylating dioxygenases that initiate polycyclic aromatic hydrocarbons degradation.
Qun HAN ; Yaling QIN ; Defeng LI
Chinese Journal of Biotechnology 2021;37(10):3439-3458
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants, which have received widespread attentions due to their carcinogenic and mutagenic toxicity. The microbial degradation of PAHs are usually started from the hydroxylation, followed by dehydrogenation, ring cleavage and step-by-step removal of branched chains, and finally mineralized by the tricarboxylic acid cycle. Rieske type non-heme iron aromatic ring-hydroxylating dioxygenases (RHOs) or cytochrome P450 oxidases are responsible for the conversion of hydrophobic PAHs into hydrophilic derivatives by the ring hydroxylation. The ring hydroxylation is the first step of PAHs degradation and also one of the rate-limiting steps. Here, we review the distribution, substrate specificity, and substrate recognition mechanisms of RHOs, along with some techniques and methods used for the research of RHOs and PAHs.
Bacteria/metabolism*
;
Biodegradation, Environmental
;
Dioxygenases/metabolism*
;
Iron
;
Polycyclic Aromatic Hydrocarbons
;
Substrate Specificity
3.Microbial biosynthesis and biotransformation of indigo and indigo-like pigments.
Xiaohong HAN ; Wei WANG ; Xingguo XIAO
Chinese Journal of Biotechnology 2008;24(6):921-926
Indigo and indigo-like pigments are widely used in the industry of textile, food and medicine. Now people pays more and more attention to developing an alternative method of indigo production which is "environment-friendy", especially microbial biosynthesis of indigo. Many microorganisms involved in the biosynthesis of indigo have been isolated and characterized, and monooxygenase and dioxygenase have been identified to catalyze indigo biosynthesis. Some genes encoding for these enzymes have been cloned and used to construct "engineering bacteria". With this kind of bacteria, more efficient fermentation systems for indigo production have been exploited. In the meantime, biotransformation of the indigo produced by microorganisms has been under investigation. These progresses will bring us a greener method of indigo and indigo-like pigments production.
Biotechnology
;
Coloring Agents
;
metabolism
;
Dioxygenases
;
metabolism
;
Fermentation
;
Indigo Carmine
;
Indoles
;
metabolism
;
Mixed Function Oxygenases
;
metabolism
;
Pseudomonas
;
metabolism
;
Sphingomonas
;
metabolism
4.TET family dioxygenases and DNA demethylation in stem cells and cancers.
Jungeun AN ; Anjana RAO ; Myunggon KO
Experimental & Molecular Medicine 2017;49(4):e323-
The methylation of cytosine and subsequent oxidation constitutes a fundamental epigenetic modification in mammalian genomes, and its abnormalities are intimately coupled to various pathogenic processes including cancer development. Enzymes of the Ten-eleven translocation (TET) family catalyze the stepwise oxidation of 5-methylcytosine in DNA to 5-hydroxymethylcytosine and further oxidation products. These oxidized 5-methylcytosine derivatives represent intermediates in the reversal of cytosine methylation, and also serve as stable epigenetic modifications that exert distinctive regulatory roles. It is becoming increasingly obvious that TET proteins and their catalytic products are key regulators of embryonic development, stem cell functions and lineage specification. Over the past several years, the function of TET proteins as a barrier between normal and malignant states has been extensively investigated. Dysregulation of TET protein expression or function is commonly observed in a wide range of cancers. Notably, TET loss-of-function is causally related to the onset and progression of hematologic malignancy in vivo. In this review, we focus on recent advances in the mechanistic understanding of DNA methylation-demethylation dynamics, and their potential regulatory functions in cellular differentiation and oncogenic transformation.
5-Methylcytosine
;
Cytosine
;
Dioxygenases*
;
DNA*
;
Embryonic Development
;
Epigenomics
;
Female
;
Genome
;
Hematologic Neoplasms
;
Humans
;
Methylation
;
Pregnancy
;
Stem Cells*
5.Analysis of clinical significance and prognostic impact of TET2 single nucleotide polymorphism I1762V in patients with acute myeloid leukemia.
Yang Wei LI ; Zhen GUO ; Lin Lin WANG ; Ling ZHOU ; Xiao Dong LYU ; Yong Ping SONG
Chinese Journal of Hematology 2022;43(3):241-246
Objective: This study aimed to investigate the clinical and prognostic significance of TET2 single nucleotide polymorphism I1762V in patients with acute myeloid leukemia (AML) . Methods: The high-throughput sequencing method was used to sequence 58 hematological tumor-related genes in bone marrow samples from 413 patients with AML. TET2 I1762V and other somatic mutations were annotated and compared with patients' clinical information and prognosis. Results: I1762V was found in 154 patients with AML, which was significantly different from the general population in NyuWa Chinese Population Variant Database (χ(2)=72.4, P<0.001) . I1762V was not related to sex, age, and karyotype of patients with AML (P>0.05) . Patients with I1762V had a significantly higher proportion of NPM1 and KIT gene mutations than others (P<0.001) . NPM1 and KIT mutations were mutually exclusive. The survival analysis results revealed that the overall survival (OS) and progression-free survival (PFS) of patients with AML with I1762V were significantly greater than those of wild-type patients (HR=0.57, P=0.030; HR=0.55, P=0.020) , whereas the OS and PFS in patients with AML with DNMT3A mutation (with or without I1762V mutation) were lower than those of wild-type patients (HR=1.79, P=0.030; HR=1.74, P=0.040) . Conclusion: TET2 SNP I1762V has been linked to AML. I1762V is a prognostic factor of patients with AML, which can be used to guide the treatment and evaluate the prognosis of AML.
DNA-Binding Proteins/genetics*
;
Dioxygenases/genetics*
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Mutation
;
Nuclear Proteins/genetics*
;
Polymorphism, Single Nucleotide
;
Prognosis
6.A genetic adaptive pattern-low hemoglobin concentration in the Himalayan highlanders.
Tian-Yi WU ; Feng-Yun LIU ; Ouzhou-Loubu ; Chao-Ying CUI ; Xue-Bin QI ; Bing SU
Chinese Journal of Applied Physiology 2013;29(6):481-493
Mean hemoglobin (Hb) concentration of about 3 500 subjects derived from 17 studies of Himalayan highlanders (Tibetans, Sherpas, and Ladakhis) was compared with lowlanders (Chinese Han, Indian Tamils) lived in the Himalayas, and European climbers during Everest expeditions as well as Andean natives. The results found that Hb concentration in Himalayan highlanders was systemically lower than those reported for Andean natives and lowland immigrants. These comparative data demonstrated that a healthy native population may successfully reside at high altitude without a significant elevation in Hb, and the lower Hb levels of Himalayan highlanders than those of migrated lowlanders and Andean natives are an example of favourable adaptation over the generations. In addition, excessive polycythemia has frequently been used as a marker of chronic mountain sickness (CMS). Altitude populations who have a higher Hb concentration also have a higher incidence of CMS. The low Hb in Himalayans suggested as showing adaptation over many generations in Tibetan stock. Recent work in Tibet, suggested that Tibetans there may have adapted to high altitude as a result of evolutionary pressure selecting for genes which give an advantage at altitude. All of the population genomic and statistical analysis indicated that EPAS1 and EGLN1 are mostly likely responsible for high altitude adaptation and closely related to low Hb concentration in Tibetans. These data supported the hypothesis that Himalayan highlanders have evolved a genetically different erythropoietic response to chronic hypoxia by virtue of their much longer exposure to high altitude.
Adaptation, Physiological
;
Altitude
;
Asian Continental Ancestry Group
;
genetics
;
Basic Helix-Loop-Helix Transcription Factors
;
genetics
;
Evolution, Molecular
;
Hemoglobins
;
genetics
;
Humans
;
Hypoxia-Inducible Factor-Proline Dioxygenases
;
genetics
;
Tibet
7.Cloning and functional study of a novel aromatic-ring-hydroxylating dioxygenase gene.
Journal of Southern Medical University 2007;27(5):717-719
The aromatic-ring-hydroxylating dioxygenase is a key enzyme that initiates the biodegradation of polycyclic aromatic hydrocarbons in bacteria. In the present study, a novel dioxygenase sequence was cloned from Terrabacter sp. FLO using a genome walking method. The dioxygenase was cloned into pET17 and actively expressed in E.coli BL21 (DE3) in co-expression with electron transfer chain proteins. The recombinant dioxygenase was found to transform phenanthrene, fluorene, pyrene and fluoranthene into the cis-dihydrodiol metabolites.
Actinomycetales
;
enzymology
;
genetics
;
Bacterial Proteins
;
genetics
;
metabolism
;
Biodegradation, Environmental
;
Cloning, Molecular
;
Dioxygenases
;
genetics
;
metabolism
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
genetics
;
metabolism
;
Fluorenes
;
metabolism
;
Hydroxylation
;
Molecular Sequence Data
;
Phenanthrenes
;
metabolism
;
Polycyclic Aromatic Hydrocarbons
;
metabolism
;
Pyrenes
;
metabolism
;
Recombinant Proteins
;
metabolism
8.Expression of plateau adaptation gene of rat tissues after plain acute exposure to high altitude.
Hua XIE ; Ying HAO ; Qiang YIN ; Wen-bing LI ; Hui LU ; Zheng-ping JIA ; Rong WANG
Journal of Zhejiang University. Medical sciences 2015;44(5):571-577
OBJECTIVETo detect the expression of the plateau adaptablity gene(EPAS1, EGLN1 and PPARα) and proteins(HIF-2, PHD2 and PPARα) in rats blood, heart, liver, lung and kidney tissue after the rats exposed to high altitude.
METHODSThe Wistar rats were randomly divided into plain group(Shanghai, 55 m), acute exposure to high altitude 3400 m group, acute exposure to high altitude 4300 m group. Blood and organs of rats were collected in 1, 3, 5 days after arrival. Real time PCR and ELISA were used to compare the expression of plateau adaptablity gene and related protein between plain group and high altitude exposure groups.
RESULTSThe count of red blood cells, hemoglobin and HCT in high altitude 4300 m were higher than those in plain group. Compared with plain group, the expression of EPAS1 gene in blood, heart, liver and kidney tissue of rats at high altitude increased obviously(all P<0.05); the expression of EGLN1 in the heart, liver, brain and kidney increased, and PPARα gene in the heart, liver and kidney increased(all P<0.05). Compared with plain group, the expression of HIF-2 protein increased significantly at high altitudes in the liver, brain and kidney tissues. PHD2 and PPARα increased in the heart, liver and kidney.
CONCLUSIONPlateau adaptive genes(EPAS1, EGLN1 and PPARα) and protein(HIF-2, PHD2 and PPARα) differed in different altitude and different organizations. They might be used as target markers of plateau hypoxia.
Adaptation, Physiological ; Altitude ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; metabolism ; Brain ; China ; Heart ; Hypoxia ; Hypoxia-Inducible Factor-Proline Dioxygenases ; metabolism ; Kidney ; Liver ; Lung ; PPAR alpha ; metabolism ; Procollagen-Proline Dioxygenase ; metabolism ; Rats ; Rats, Wistar
9.Cloning, molecular characterization and expression of acireductone dioxygenase (ARD) gene from Salvia miltiorrhiza.
Gangping HAO ; Jianmei WANG ; Renjiu SHI ; Xianzhong ZHANG
China Journal of Chinese Materia Medica 2011;36(3):346-350
OBJECTIVETo study the acireductone dioxygenase (designated as SmARD) gene of Salvia miltiorrhiza through bioinformatics and characterization of its tissue expression and response expression on stress in shoot.
METHODSmARD gene was obtained by sequencing cDNA library constructed by us. BLAST was used for alignment, ORF finder software was applied to find open reading frame, prosite was used to analyze the protein characterization. Semi-quantitative RT-PCR was used to detect the gene expression level.
RESULTThe full -length cDNA of SmRAD was 688 bp long with a 591 bp ORF (open reading frame) that putatively encoded a polypeptide of 196 amino acids; with a predicted molecular mass of 23.27 kDa. The deduced amino acid sequence of SmRAD of gene shared high homology with other known RADs. Semi-quantitative RT-PCR analysis indicated that SmRAD was constitutively expressed in roots, stems, flower and leaves of S. miltiorrhiza, with the high expression in roots. In addition, SmRAD expression level under different stress condition was also analyzed in root, including signaling components for plant defence responses, such as methyl jasmonate, salicylic acid and ABA, as well as drought, cold and salt abiotic stress. The expression of SmRAD was suppressed by water deficit treatment for 3 d, 150 mmol x L(-1) NaCl, 4 degrees C cold and 100 mmol x L(-1) ABA treatment for 1 d, but induced by 100 mmol x L(-1) MJ and 10 mmol x L(-1) ETH.
CONCLUSIONA novel SmARD gene was cloned from S. miltiorrhiza. This study will enable us to further understand the role of SmARD in the defense response under different abiotic stress and in synthesis of active cmpounds in S. miltiorrhiza at molecular level.
Amino Acid Sequence ; Cloning, Molecular ; Dioxygenases ; genetics ; metabolism ; Gene Expression Regulation, Plant ; Molecular Sequence Data ; Phylogeny ; Plant Roots ; genetics ; metabolism ; Salvia miltiorrhiza ; genetics ; metabolism ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Stress, Physiological
10.Hypoxia-responsive factor PHD2 and angiogenic diseases.
Hui-Zhen JIA ; Vivi KASIM ; Zhi-Ling XU ; Li YANG ; Shou-Rong WU
Acta Pharmaceutica Sinica 2014;49(2):151-157
Prolyl-4-hydroxylase domain (PHDs) family is one of the most important regulatory factors in hypoxic stress. PHD2 plays a critical role in cells and tissues adaptation to the low oxygen environment. Its hydroxylation activity regulates the stability and transcriptional activity of the hypoxia-inducible factor 1 (HIF-1), which is the key factor in response to hypoxic stress. Subsequently, PHD2 acts as an important factor in oxygen homeostasis. Studies have shown that PHD2, through its regulation on HIF-1, plays an important role in the post-ischemic neovascularization. Furthermore, under hypoxic condition, PHD2 also regulates other pathways that positively regulate angiogenesis factors HIF-1 independently. Moreover, recently, several evidences have also shown that PHD2 also affects tumor growth and metastasis in a tumor microenvironment. Based on these facts, PHD2 have been considered as a potential therapeutic target both in treating ischemic diseases and tumors. Here, we review the molecular regulation mechanism of PHD2 and its physiological and pathological functions. We focus on the role of PHD2 in both therapeutic angiogenesis for ischemic disease and tumor angiogenesis, and the current progress in utilizing PHD2 as a therapeutic target.
Animals
;
Humans
;
Hydroxylation
;
Hypoxia-Inducible Factor 1
;
metabolism
;
Hypoxia-Inducible Factor-Proline Dioxygenases
;
antagonists & inhibitors
;
physiology
;
Neoplasms
;
blood supply
;
metabolism
;
pathology
;
therapy
;
Neovascularization, Pathologic
;
metabolism
;
pathology
;
Tumor Microenvironment
;
Vascular Diseases
;
pathology
;
therapy