1.Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile
Jonas CAMPOS ; Belém SAMPAIO-MARQUES ; Diogo SANTOS ; Sandra BARATA-ANTUNES ; Miguel RIBEIRO ; Sofia C. SERRA ; Tiffany S. PINHO ; João CANTO-GOMES ; Ana MAROTE ; Margarida CORTEZ ; Nuno A. SILVA ; Adina T. MICHAEL-TITUS ; António J. SALGADO
Tissue Engineering and Regenerative Medicine 2025;22(1):113-128
BACKGROUND:
Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.
METHODS:
Comprehensive dose–response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-b-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.
RESULTS:
Priming with 40 lM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.
CONCLUSIONS
These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
2.Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile
Jonas CAMPOS ; Belém SAMPAIO-MARQUES ; Diogo SANTOS ; Sandra BARATA-ANTUNES ; Miguel RIBEIRO ; Sofia C. SERRA ; Tiffany S. PINHO ; João CANTO-GOMES ; Ana MAROTE ; Margarida CORTEZ ; Nuno A. SILVA ; Adina T. MICHAEL-TITUS ; António J. SALGADO
Tissue Engineering and Regenerative Medicine 2025;22(1):113-128
BACKGROUND:
Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.
METHODS:
Comprehensive dose–response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-b-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.
RESULTS:
Priming with 40 lM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.
CONCLUSIONS
These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
3.Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile
Jonas CAMPOS ; Belém SAMPAIO-MARQUES ; Diogo SANTOS ; Sandra BARATA-ANTUNES ; Miguel RIBEIRO ; Sofia C. SERRA ; Tiffany S. PINHO ; João CANTO-GOMES ; Ana MAROTE ; Margarida CORTEZ ; Nuno A. SILVA ; Adina T. MICHAEL-TITUS ; António J. SALGADO
Tissue Engineering and Regenerative Medicine 2025;22(1):113-128
BACKGROUND:
Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.
METHODS:
Comprehensive dose–response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-b-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.
RESULTS:
Priming with 40 lM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.
CONCLUSIONS
These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
4.Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile
Jonas CAMPOS ; Belém SAMPAIO-MARQUES ; Diogo SANTOS ; Sandra BARATA-ANTUNES ; Miguel RIBEIRO ; Sofia C. SERRA ; Tiffany S. PINHO ; João CANTO-GOMES ; Ana MAROTE ; Margarida CORTEZ ; Nuno A. SILVA ; Adina T. MICHAEL-TITUS ; António J. SALGADO
Tissue Engineering and Regenerative Medicine 2025;22(1):113-128
BACKGROUND:
Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.
METHODS:
Comprehensive dose–response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-b-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.
RESULTS:
Priming with 40 lM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.
CONCLUSIONS
These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
5.Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile
Jonas CAMPOS ; Belém SAMPAIO-MARQUES ; Diogo SANTOS ; Sandra BARATA-ANTUNES ; Miguel RIBEIRO ; Sofia C. SERRA ; Tiffany S. PINHO ; João CANTO-GOMES ; Ana MAROTE ; Margarida CORTEZ ; Nuno A. SILVA ; Adina T. MICHAEL-TITUS ; António J. SALGADO
Tissue Engineering and Regenerative Medicine 2025;22(1):113-128
BACKGROUND:
Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.
METHODS:
Comprehensive dose–response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-b-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.
RESULTS:
Priming with 40 lM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.
CONCLUSIONS
These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
6.Rat Cerebrospinal Fluid Treatment Method through Cisterna Cerebellomedullaris Injection.
Thainá Garbino DOS SANTOS ; Mery Stéfani Leivas PEREIRA ; Diogo Losch OLIVEIRA
Neuroscience Bulletin 2018;34(5):827-832
Drugs that lack the ability to cross the blood-brain barrier (BBB) need to be placed directly into the central nervous system. Our laboratory studies the involvement of the glutamatergic system in the aggressiveness of glioma, and some ligands of glutamate receptors cannot permeate the BBB. Here, glioma-implanted rats were treated by a technique that delivers ligands directly into the cerebrospinal fluid by puncture into the cisterna cerebellomedullaris. Rats were anesthetized and fixed in a rodent stereotactic device. The head was gently tilted downwards at an angle that allowed exposure of the cisterna. Injection into the cisterna was done freehand using a gingival needle coupled to a microsyringe. The efficiency of intracisternal injection was demonstrated using a methylene blue solution. This type of injection is adaptable for any rodent model using small volumes of a variety of other drugs, and is an interesting method for neuroscience studies.
Anesthesia
;
Animals
;
Central Nervous System Agents
;
administration & dosage
;
Cerebrospinal Fluid
;
Cisterna Magna
;
Contrast Media
;
Excitatory Amino Acid Agents
;
administration & dosage
;
Glioma
;
drug therapy
;
Methylene Blue
;
Models, Animal
;
Rats, Wistar