1.The biological clock gene BMAL1 inhibits the proliferation, migration and invasion of radiation-resistant nasopharyngeal carcinoma cell line 5-8FR by regulating PI3K/Akt/MMP-2/9 signaling pathway
Yuxin LI ; Chaofen ZHAO ; Li'na LIU ; Qianyong HE ; Xinyu XU ; Ding'an ZHOU ; Jianjiang ZHOU ; Feng JIN
Chinese Journal of Radiation Oncology 2022;31(11):1039-1045
Objective:To investigate the effect of BMAL1 gene on the proliferation, migration and invasion ability of radiation-resistant nasopharyngeal carcinoma cell line (5-8FR) and the molecular mechanism. Methods:A multi-target click model was constructed for radiation-resistant nasopharyngeal carcinoma cell line 5-8FR by low-dose fractionated irradiation, and the results of clone formation assay were used to fit the multi-target click model and calculate the sensitization ratio of radiotherapy. The expression levels of PI3K/Akt/MMP-2/9 signaling pathway-related proteins in 5-8FR and control 5-8F cell lines were detected by Western blot. The overexpression and knockdown vectors of BMAL1 gene were constructed and transfected with 5-8F and 5-8F cell lines, respectively. The BMAL1 gene overexpression (pcDNA-BMAL1) and its control (pcDNA) and interference (BMAL1-shRNA) and control (con-shRNA) cell lines were stably transfected with nasopharyngeal carcinoma cell line 5-8F and radiation-resistant cell line 5-8FR, respectively. Western blot was performed to verify the infection efficiency and detect the changes of PI3K/Akt/MMP-2/9 signaling pathway-related proteins after overexpression or interference of BMAL1 gene in both groups of cells. CCK-8 assay, cell scratch test and Transwell chamber test were conducted to investigate the proliferation, migration and invasion capabilities of 5-8FR cell line after overexpression or interference of BMAL1 gene. Results:BMAL1 gene expression was down-regulated, and those of PI3K/Akt pathway proteins and downstream related molecules of MMP-2 and MMP-9 were up-regulated, and TIMP-2 and TIMP-1 expression was down-regulated in nasopharyngeal carcinoma radiation-resistant cell lines. Overexpression of BMAL1 gene inhibited the expression of PI3K/Akt pathway proteins and downstream related molecules of MMP-2 and MMP-9, promoted the expression of TIMP-2 and TIMP-1, and inhibited the proliferation, migration and invasion capabilities of radiation-resistant nasopharyngeal carcinoma cells, while interference with BMAL1 gene yielded the opposite results. Conclusions:BMAL1 gene can reverse the expression of PI3K/Akt/MMP-2/9 signaling pathway-related proteins in radiation-resistant nasopharyngeal carcinoma cell lines and inhibit the proliferation, migration and invasion capabilities of radiation-resistant nasopharyngeal carcinoma cell lines.
2.Isorhamnetin activates Sirt1/PGC-1α signaling pathway to inhibit MPP+-induced SH-SY5Y cell injury
Wen ZHANG ; Jun-ke SONG ; Xiao-yu ZHU ; Hai-guang YANG ; Qi-meng ZHOU ; Qi-tai XU ; Guan-hua DU
Acta Pharmaceutica Sinica 2019;54(11):1976-1981
We studied the protective effect and mechanism of isorhamnetin (ISO) on 1-methyl-4-phenylpyridiniumion (MPP+)-induced SH-SY5Y cells injury. MPP+-induced SH-SY5Y cell injury model was established, and cell viability was measured by MTT and LDH methods. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in cells were determined to investigate the level of oxidative stress. DCFH-DA and MitoSOX fluorescence probes were used to detect the levels of intracellular reactive oxygen species (ROS) and mitochondria superoxide, respectively. JC-1 fluorescence probe was used to detect the changes of mitochondrial membrane potential. Western blot and immunofluorescence methods were used to determine the expressions of Sirt1 and PGC-1 proteins, as well as the expression levels of apoptosis-related proteins Bax and Bcl-2. MPP+ at the dose of 500 μmol·L-1 significantly reduced SH-SY5Y cells viability to 52.46% and increased LDH release to 417.63%. ISO at 5 and 15 μmol·L-1 significantly increased the expression of Sirt1 and PGC-1