1.Maxillary space closure using a digital manufactured Mesialslider in a single appointment workflow
Lynn WILHELMY ; Jan H. WILLMANN ; Nour Eldin TARRAF ; Benedict WILMES ; Dieter DRESCHER
The Korean Journal of Orthodontics 2022;52(3):236-245
New digital technologies, many involving three-dimensional printing, bring benefits for clinical applications. This article reports on the clinical procedure and fabrication of a skeletally anchored mesialization appliance (Mesialslider) using computer-aided design/computer-aided manufacturing (CAD/CAM) for space closure of a congenitally missing lateral incisor in a 12-year-old female patient. The insertion of the mini-implants and appliance was performed in a single appointment. Bodily movement of the molars was achieved using the Mesialslider. Anchorage loss, such as deviation of the anterior midline or palatal tilting of the anterior teeth, was completely avoided. CAD/CAM facilitates safe and precise insertion of mini-implants. Further, mini-implants can improve patient comfort by reducing the number of office visits and eliminating the need for orthodontic bands and physical impressions.
2.Systematic review of mini-implant displacement under orthodontic loading.
Manuel NIENKEMPER ; Jörg HANDSCHEL ; Dieter DRESCHER
International Journal of Oral Science 2014;6(1):1-6
A growing number of studies have reported that mini-implants do not remain in exactly the same position during treatment, although they remain stable. The aim of this review was to collect data regarding primary displacement immediately straight after loading and secondary displacement over time. A systematic review was performed to investigate primary and secondary displacement. The amount and type of displacement were recorded. A total of 27 studies were included. Sixteen in vitro studies or studies using finite element analysis addressed primary displacement, and nine clinical studies and two animal studies addressed secondary displacement. Significant primary displacement was detected (6.4-24.4 µm) for relevant orthodontic forces (0.5-2.5 N). The mean secondary displacement ranged from 0 to 2.7 mm for entire mini-implants. The maximum values for each clinical study ranged from 1.0 to 4.1 mm for the head, 1.0 to 1.5 for the body and 1.0 to 1.92 mm for the tail part. The most frequent type of movement was controlled tipping or bodily movement. Primary displacement did not reach a clinically significant level. However, clinicians can expect relevant secondary displacement in the direction of force. Consequently, decentralized insertion within the inter-radicular space, away from force direction, might be favourable. More evidence is needed to provide quantitative recommendations.
Dental Implants
;
Humans
;
Miniaturization
;
Orthodontic Anchorage Procedures
;
instrumentation
;
methods
;
Stress, Mechanical