1.Emerging role of protein modification in inflammatory bowel disease.
Gaoying WANG ; Jintao YUAN ; Ji LUO ; Dickson Kofi Wiredu OCANSEY ; Xu ZHANG ; Hui QIAN ; Wenrong XU ; Fei MAO
Journal of Zhejiang University. Science. B 2022;23(3):173-188
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Cytokines/genetics*
;
Humans
;
Inflammatory Bowel Diseases
;
NF-kappa B/metabolism*
;
Protein Processing, Post-Translational
;
Tumor Necrosis Factor-alpha/metabolism*
2.HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway.
Yuting XU ; Li ZHANG ; Dickson Kofi Wiredu OCANSEY ; Bo WANG ; Yilin HOU ; Rong MEI ; Yongmin YAN ; Xu ZHANG ; Zhaoyang ZHANG ; Fei MAO
Journal of Zhejiang University. Science. B 2022;23(5):423-431
As a group of nonspecific inflammatory diseases affecting the intestine, inflammatory bowel disease (IBD) exhibits the characteristics of chronic recurring inflammation, and was proven to be increasing in incidence (Kaplan, 2015). IBD induced by genetic background, environmental changes, immune functions, microbial composition, and toxin exposures (Sasson et al., 2021) primarily includes ulcerative colitis (UC) and Crohn's disease (CD) with complicated clinical symptoms featured by abdominal pain, diarrhea, and even blood in stools (Fan et al., 2021; Huang et al., 2021). UC is mainly limited to the rectum and the colon, while CD usually impacts the terminal ileum and colon in a discontinuous manner (Ordás et al., 2012; Panés and Rimola, 2017). In recent years, many studies have suggested the lack of effective measures in the diagnosis and treatment of IBD, prompting an urgent need for new strategies to understand the mechanisms of and offer promising therapies for IBD.
Chronic Disease
;
Colitis, Ulcerative/therapy*
;
Crohn Disease/epidemiology*
;
Diarrhea
;
Homeodomain Proteins
;
Humans
;
Inflammatory Bowel Diseases
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs
;
RNA, Long Noncoding
;
Recurrence
;
Umbilical Cord/cytology*