1.Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy
Korean Circulation Journal 2018;48(12):1097-1119
Although elevated serum low-density lipoprotein-cholesterol (LDL-C) is without any doubts accepted as an important risk factor for cardiovascular disease (CVD), the role of elevated triglycerides (TGs)-rich lipoproteins as an independent risk factor has until recently been quite controversial. Recent data strongly suggest that elevated TG-rich lipoproteins are an independent risk factor for CVD and that therapeutic targeting of them could possibly provide further benefit in reducing CVD morbidity, events and mortality, apart from LDL-C lowering. Today elevated TGs are treated with lifestyle interventions, and with fibrates which could be combined with omega-3 fatty acids. There are also some new drugs. Volanesorsen, is an antisense oligonucleotid that inhibits the production of the Apo C-III which is crucial in regulating TGs metabolism because it inhibits lipoprotein lipase (LPL) and hepatic lipase activity but also hepatic uptake of TGs-rich particles. Evinacumab is a monoclonal antibody against angiopoietin-like protein 3 (ANGPTL3) and it seems that it can substantially lower elevated TGs levels because ANGPTL3 also regulates TGs metabolism. Pemafibrate is a selective peroxisome proliferator-activated receptor alpha modulator which also decreases TGs, and improves other lipid parameters. It seems that it also has some other possible antiatherogenic effects. Alipogene tiparvovec is a nonreplicating adeno-associated viral vector that delivers copies of the LPL gene to muscle tissue which accelerates the clearance of TG-rich lipoproteins thus decreasing extremely high TGs levels. Pradigastat is a novel diacylglycerol acyltransferase 1 inhibitor which substantially reduces extremely high TGs levels and appears to be promising in treatment of the rare familial chylomicronemia syndrome.
Apolipoprotein C-III
;
Cardiovascular Diseases
;
Diacylglycerol O-Acyltransferase
;
Fatty Acids, Omega-3
;
Fibric Acids
;
Hyperlipoproteinemia Type I
;
Life Style
;
Lipase
;
Lipoprotein Lipase
;
Lipoproteins
;
Metabolism
;
Mortality
;
PPAR alpha
;
Risk Factors
;
Triglycerides
2.PF-04620110, a Potent Antidiabetic Agent, Suppresses Fatty Acid-Induced NLRP3 Inflammasome Activation in Macrophages
Seung Il JO ; Jung Hwan BAE ; Seong Jin KIM ; Jong Min LEE ; Ji Hun JEONG ; Jong Seok MOON
Diabetes & Metabolism Journal 2019;43(5):683-699
BACKGROUND: Chronic inflammation has been linked to insulin resistance and type 2 diabetes mellitus (T2DM). High-fat diet (HFD)-derived fatty acid is associated with the activation of chronic inflammation in T2DM. PF-04620110, which is currently in phase 1 clinical trials as a selective acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) inhibitor, is a potent anti-diabetic agent that may be important for the regulation of chronic inflammation in T2DM. However, the mechanisms by which PF-04620110 regulates fatty acid-induced chronic inflammation remain unclear. METHODS: PF-04620110 was used in vitro and in vivo. DGAT1-targeting gRNAs were used for deletion of mouse DGAT1 via CRISPR ribonucleoprotein (RNP) system. The activation of NLRP3 inflammasome was measured by immunoblot or cytokine analysis in vitro and in vivo. RESULTS: Here we show that PF-04620110 suppressed fatty acid-induced nucleotide-binding domain, leucine-rich-repeat-containing receptor (NLR), pyrin-domain-containing 3 (NLRP3) inflammasome activation in macrophages. In contrast, PF-04620110 did not change the activation of the NLR family, CARD-domain-containing 4 (NLRC4), or the absent in melanoma 2 (AIM2) inflammasomes. Moreover, PF-04620110 inhibited K⁺ efflux and the NLRP3 inflammasome complex formation, which are required for NLRP3 inflammasome activation. PF-04620110 reduced the production of interleukin 1β (IL-1β) and IL-18 and blood glucose levels in the plasma of mice fed HFD. Furthermore, genetic inhibition of DGAT1 suppressed fatty acid-induced NLRP3 inflammasome activation. CONCLUSION: Our results suggest that PF-04620110 suppresses fatty acid-induced NLRP3 inflammasome activation.
Animals
;
Blood Glucose
;
Clinical Trials, Phase I as Topic
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Diabetes Mellitus, Type 2
;
Diacylglycerol O-Acyltransferase
;
Diet, High-Fat
;
Fatty Acids
;
Humans
;
In Vitro Techniques
;
Inflammasomes
;
Inflammation
;
Insulin Resistance
;
Interleukin-18
;
Interleukins
;
Macrophages
;
Melanoma
;
Mice
;
Plasma
;
Ribonucleoproteins
;
RNA, Guide